• Title/Summary/Keyword: 시공품질

Search Result 996, Processing Time 0.027 seconds

A Comparative Study of Aggregation Schemes for Concurrent Transmission over Multiple WLAN Interfaces (다중 무선랜 인터페이스 전송을 위한 결합 방식의 성능 연구)

  • Saputra, Yuris Mulya;Hwang, Hwanwoong;Yun, Ji-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.18-25
    • /
    • 2014
  • To increase wireless capacity, the concurrent use of multiple wireless interfaces on different frequency bands, called aggregation, can be considered. In this paper, we focus on aggregation of multiple Wi-Fi interfaces with packet-level traffic spreading between the interfaces. Two aggregation schemes, link bonding and multipath TCP (MPTCP), are tested and compared in a dualband Wi-Fi radio system with their Linux implementation. Various test conditions such as traffic types, network delay, locations, interface failures and configuration parameters are considered. Experimental results show that aggregation increases throughput performance significantly over the use of a single interface. Link bonding achieves lower throughput than MPTCP due to duplicate TCP acknowledgements (ACKs) resulting from packet reordering and filtering such duplicate ACKs out is considered as a possible solution. However, link bonding is fast responsive to links' status changes such as a link failure. It is shown that different combinations of interface weights for packet spread in link bonding result in different throughput performance, envisioning a spatio-temporal adaptation of the weights. We also develop a mathematical model of power consumption and compare the power efficiency of the schemes applying different power consumption profiles.

Characteristics of Foam Concrete with Application of Mineral Admixture (무기혼화재 적용에 따른 기포콘크리트의 특성)

  • Kim, Sang-Chel;Kim, Yun-Tae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.97-106
    • /
    • 2009
  • self-loading, various problems related to construction can be solved as well as the save of construction cost. Thus, this study has an aim of applying foam concrete to structural purpose by adding bottom ash as a reinforcing material like fine aggregate, in contrast to conventional non-structural usage such as soundproofing or insulating materials. In addition, it was evaluated in terms of unit volume weight, flow value, air void, water absorption and dosage of foam agent wether replacement of cement by granulated blast furnace slag or fly-ash has an effect on the material characteristics of foam concrete. As results of experiments, it can be found that the increase of fine aggregate ratio, that is to say, the increase of bottom ash results in the increase of unit volume weight, while decreasing air void and flow value. But, appropriate addition of bottom ash to foam concrete makes it easy to control a homogeneous and uniform quality in foam concrete due to less sensitive to bubbles. As the replacement ratio of mineral admixtures such as granulated blast furnace slag and fly-ash increases, as unit volume weight tends to decrease. In the meanwhile, serious effects were shown on fluidity of foam concrete when more than limit of replacement ratio was applied.

  • PDF

Development of block-type sidewalk pavement system using snow-melting system (융설시스템을 이용한 조립식 보도포장 기술 개발)

  • Park, Kyungmo;Lee, Jeonguk;Kim, Changduk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.6
    • /
    • pp.136-143
    • /
    • 2015
  • Snow-melting system has been applied not only to roads for car traffic but also to pavement for the pedestrians safety reason in some of the developed countries such as USA and Canada based on countermeasures against Natural Disasters Act revised in 2000. Even though this system was introduced in korea in 2006 and has been partly applied to car traffic roads, there is few places that the system has been applied. Therefore, in this research a snow-melting system with a block-type to cover a pavement that efficiently transfers heat form heat rays to the top of a pavement and protects the heat rays. A quality check showed that compression and bending strength was improved approximately 5 times stronger and 7 to 10 times more absorption rate than the KS(Korea Industrial Standard) requirement. Moreover, only 10 minute was required to increase temperature above zero with a block-type snow-melting system whereas approximately 180 minute was spent with the existing system. This research is expected to contribute to environmental issues and reduce accidents on a slippery road.

An Analysis and Improvement of Free Form Building's Construction Productivity - Focused on Exposed Concrete Work - (비정형 건축물 공사의 생산성 분석 및 향상방안 - 노출콘크리트 공사를 중심으로 -)

  • Lee, Eun-Young;Kim, Yea-Sang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.3
    • /
    • pp.38-46
    • /
    • 2014
  • The Global's top five Design Firms selected from BauNetz a German architectural magazine in 2007 designed free form building design which was 25% of the overall design by 2006-2010. Free form building is a landmark of the city and the country so its social and economic impacts are very large. In case of Korea, free form buildings such as Tribowl in Incheon, KINTEX Exhibition hall 2 and Dongdaemun Design Plaza have increased. However, those the increase in design trends and, the needs due to the lack of free form building design and construction management experience, free form building projects can't be expected to profitability and have a number of problems after completion. Especially, there are many excessive quality problems and the rising cost due to design changes frequently and lack of experience and data. Thus an initial plan regardless of considering of free form building's characteristics can be a huge risk because of the difference with the plan and actual projects, yet there aren't free form building project's performance data and case studies related to productivity. In this study, through selection of low-construction productivity works and an analysis of the work process and productivity data, hope to propose an actual field productivity of free form building and the ways to improve productivity.

Characteristics of the 80MPa High Strength Concrete according to the Hot Weather Outside Temperature conditions (서중 외기온도 조건에 따른 80 MPa 고강도콘크리트의 특성)

  • Jung, Yong-Wook;Lee, Seung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.688-696
    • /
    • 2016
  • This paper evaluates the effect of hot weather conditions on the fresh concrete characteristics of 80-MPa high-strength concrete. The slump flow, packing ability, setting time, hydration heat, and compressive strength were evaluated under exterior temperatures of $20^{\circ}C$, $30^{\circ}C$, and $40^{\circ}C$. The slump flow, arrival speed of 500 mm, and their changes with the elapsed time were found to bring the occurrence of rapid slump loss forward by about 30 minutes when increasing the temperature by $10^{\circ}C$ from $20^{\circ}C$. The initial and final setting times of the concrete at $20^{\circ}C$ were 7 hours and 12 hours, which were reduced by 1 hour and 3 hours at $30^{\circ}C$ and by 2 hours and 5 hours at $40^{\circ}C$, respectively. The hydration heat characteristics at $20^{\circ}C$ and $30^{\circ}C$ were similar in terms of the highest temperature of the concrete casting depth and the time when the maximum temperature occurred. However, at $40^{\circ}C$, the maximum temperature occurred about 4 hours earlier, and the highest temperature per the concrete casting depth increased by about $12^{\circ}C$. Therefore, it is concluded that the characteristics can vary according to the exterior temperature. Thus, quality assurance should consider workability, temperature cracks due to hydration heat, the properties of strength development, and other characteristics.

Study on Adhesive Strength of Polymer Modified Cement Mortar for Maintenance in Concrete Structure (콘크리트 구조물 보수용 폴리머시멘트 모르타르의 부착강도 특성에 관한 연구)

  • Park, Sang-Soon;Kim, Jung-Heum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.128-135
    • /
    • 2010
  • Polymer-modified cement mortar(PCM) has been widely used for strengthening of the concrete structures due to its excellent physical properties such as high strength and durability. Adhesive strength or behavior, on the other hands, between PCM and concrete is very important in strengthening the concrete member using PCM. Therefore the adhesive failure mechanism between PCM and concrete should be fully verified and understood. This study was performed to evaluate adhesive strength of PCM to the concrete by the direct pull-out test. In the direct pull-out tests, the adhesive strength under the various pre-treatment conditions such as immersion, thunder shower, freezing and thawing are evaluated. Also, the field direct pull-out test are performed to investigate the adhesive strength of mock-up test specimens. In the results of the test, the adhesive strength value by field test are lower than those of the standard curing condition. From these comparison and investigation, field test result was similar with the thunder shower test result. The results of the test was used to evaluate the korean industrial standard of polymer modified cement mortars for maintenance in concrete.

The Rheology of Cement Paste Using Polycarboxylate-Based Superplasticizer for Normal Strength-High Fluidity Concrete (보통강도 고유동 콘크리트용 PC계 고성능 감수제를 사용한 시멘트 페이스트의 레올로지 특성 평가)

  • Kong, Tae-Woong;Lee, Han-Seung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.276-286
    • /
    • 2021
  • General high fluidity concrete is the area of high strength concrete with a high amount of cement to secure the required fluidity and workability. Since most of the concrete structures currently used have normal strength, there is a limit to the practical expansion and practicality of use. Thus it is necessary to develop normal strength-high fluidity concrete with low binders that can be used not only in general buildings but also in special buildings, and can greatly reduce construction time and save labor costs. This requires to develop and apply the polycarboxylate-based superplasticizer. In this study, PCE was prepared for each combination of starting materials(WR, HB, RT) and the rheological properties of cement paste were analyzed using ringflow cone and a rotary viscometer. As a result, when PCE with a combination of WR 80%, HB 6.5%, and RT 13.5% was applied, the yield stress can be minimized while securing the plastic viscosity at level of the normal strength. In addition, high fluidity due to the high dispersion effect was confirmed.

Effect of Vibration on Characteristics of Lightweight Air-Trapped Soil (진동이 경량기포토의 특성에 미치는 영향)

  • Lee, Young-Jun;Kim, Sung Won;Park, Lee Keun;Kim, Tae-Hyung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.4
    • /
    • pp.5-15
    • /
    • 2011
  • This study is conducted to find out the effect of vibration on cure and compressive strength of lightweight Air Trapped Soil(ATS). If ATS is used next to a structure existed, the effect of vibration problems may be occurred, because there exist many sources of vibration such as pile driving, blasting and use of construction machinery. For example, if a road is expanded to reduce traffic congestion, it is expected that ATS's quality may be decreased due to vibration generated by cars moving on the road. Especially, because ATS has many air bubbles and needs a time for curing, the effect of vibration is more serious than we expected. So far, the effect of vibration on concrete has been conducted, but the study of ATS has not been conducted in detail. Therefore, for evaluating the effect of vibration on ATS during cure proceeds, unconfined compression tests are conducted on the samples prepared with different variables including vibration velocity, time when vibrated and mixing ratio. The results clearly show the effect of vibration on the characteristics of ATS.

Evaluation of Fluidity Over Time and Mechanical Properties of Cement-based Composite Materials for 3D Printing (3D 프린팅용 시멘트계 복합재료의 경시변화 및 역학적 특성평가)

  • Seo, Eun-A;Lee, Ho-Jae;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.73-80
    • /
    • 2022
  • This study evaluated changes in fluidity and rheological properties over time for 3D printed composite materials, and evaluated compressive strength and splitting tensile strength properties for laminated and molded specimens. The composite material for 3D printing starts to change rapidly after 30 minutes of extrusion, and the viscosity of the material tends to be maintained up to 90 minutes, but it was confirmed that construction within 60 minutes after mixing is effective. The compressive strength of the laminated test specimen showed equivalent or better performance at all ages compared to the molded test specimen. In the stress-strain curve of the laminated specimen, the initial slope was similar to that of the molded specimen, but the descending slope was on average 1.9 times higher than that of the molded specimen, indicating relatively brittle behavior. The splitting tensile strength of the P-V laminated specimen was about 6% lower than that of the molded specimen. It is judged that this is because the interfacial adhesion force against the vertical load is affected by the pattern direction of the laminated test specimen.

Development of Performance Indicators on Private Building Construction Sites using Supervisory Report (감리데이터 기반의 민간 건축현장 성과지표 개발)

  • Sung, Yookyung;Hur, Youn Kyoung;Lee, Seung Woo;Yoo, Wi Sung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.6
    • /
    • pp.65-75
    • /
    • 2022
  • As performance measurement is important for systematic management, the key indicators for performance measurement have been consistently researched in the construction industry. However, there are only a few cases in which performance measurement is performed because it requires strenuous efforts to collect data for measurement. Unlike the public sector, which has been collecting project data through laws, the private sector has very little data to measure performance. In contrast, supervision work concerns important data necessary for the performance management on building construction sites in accordance with the Building Act. Therefore, in this study, we used the data from supervisory reports to measure the performance of private building projects. First, we derived 6 performance areas and 15 indicators through a few rounds of expert group discussions and 2 surveys. Then, we identified the performance indicators with high feasibility of data collection and computed their degree of significance via the analytic hierarchy process. It is expected that the performance indicators and their computational processes derived in this study can be used to systematically measure the performance and aid the speedy diagnosis of private building construction sites.