• Title/Summary/Keyword: 시공성개선

Search Result 775, Processing Time 0.027 seconds

Track-Structure Interaction Analysis of Fast Hardening Track on Railway Bridge Considering Effect of Anchor and Friction (앵커와 마찰의 영향을 고려한 교량상 급속경화궤도의 궤도-교량 상호작용해석)

  • Cho, Sang-Hyeon;Lee, Il-Wha;Chung, Won-Seok;Lee, Hee-Young;Lee, Kyoung-Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.1
    • /
    • pp.53-61
    • /
    • 2018
  • Ballast track requires constant maintenance work due to progress of track irregularity. Fast Hardening Track(FHT) has been developed to reduce the maintenance effort done by injecting fast hardening mortar in aged ballast to convert slab track. For the application of FHT to a railway bridge, post-installed anchors should be placed at center of the track segment to fix it on bridge. This paper presents track-bridge interaction analysis results with FHT considering stiffness and strength of post-installed anchor, age of FHT concrete and friction between FHT and bridge deck surface. Based on the analysis results, this study suggests when is good to install the anchors and allow normal operation of passing train.

Development of BIM-based CPLM System for Civil Project Management (토목 프로젝트 관리를 위한 BIM 기반 CPLM 시스템 개발)

  • Lee, Kwang-Myong;Lee, Chang-Woo;Han, Song-Yi;Kang, Hyoung-Seok;Noh, Sang-Do
    • Journal of KIBIM
    • /
    • v.1 no.2
    • /
    • pp.24-29
    • /
    • 2011
  • BIM technology, based on 3D model of civil engineering structures, creates and manages information of the structures throughout four stages: Planning, design, construction, and maintenance. BIM is now used around the globe for improvement of the construction productivity. However, in order to expect the efficient engineering work, collaboration system between participants in a construction project is necessary. Therefore, in this paper BIM based CPLM (Construction project lifecycle management) system was designed and developed by analyzing the requirements of participants of a construction project. CPLM system offers an environment which enables the sharing and management of information according to the each stage of construction. CPLM is expected to aid cooperative decision-making during the overall construction process through the process innovation and the efficient data management.

Temporary Stresses by Applying Construction Methods for Continuous Steel-Concrete Double Composite Box Girder Bridges (이중합성 연속 박스거더교에 대한 가설공법별 발생 단면력 검토)

  • Choi, Hang Yong;Suh, Suk Koo;Oh, Myung Seok;Oh, Sae Hwan;Kim, Hee Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.681-693
    • /
    • 2007
  • Construction techniques for continuous steel bridges were applied to steel-concrete double composite box girder bridges. Concrete depth and length at the bottom of the steel box in the negative moment region were determined by plastic moment region and negative moment region of the double composite section, respectively. Construction methods, such as crane lifting method, free cantilever method, and incremental launching method were used for the analysis of the construction stage. Two cases of the construction phase were considered and analyzed for the stress resultant of double composite girders. The behavior of the nose-deck elastic system was examined by three-dimensionless parameters, such as the nose length, the unit weight of the launching nose, and the flexural stiffness of the nose. The adoption of the launching nose has become an effective solution in the incremental launching of steel-concrete double composite box girder bridges.

Enhancing maintenance performance of tunnel drainage using vibration from polyvinylidene fluoride(PVDF) film (압전필름의 진동을 활용한 터널배수재 유지관리 성능 개선)

  • Xin, Zhen-Hua;Moon, Jun-Ho;Song, Young-Karb;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.822-826
    • /
    • 2015
  • This study investigated the possible use of vibration from polyvinylidene fluoride(PVDF) film to enhance the performance of the deteriorated tunnel drainage due to physical/chemical clogging of the fine particles through a series of laboratory experiments. The test program was consisted of two different experiments, fundamental investigation and drainage model test. In the fundamental investigation, flow of clay slurry mixed with 50% water (freshwater and brine) on PVDF film with various frequencies was examined. In the model tests, slurry clogging to the woven fiber attached to drainage pipe and its reduction by vibration was investigated. Results of the experiment show that vibration from PVDF film enhances the drain performance significantly. Based upon the investigation, it gives an essential data that are needed for a potential use of hybrid drainage system with PVDF.

A Case Study of the New Center-Cut Method in Tunnel : SAV-Cut(Stage Advance V-Cut) (터널 심발발파공법 SAV-Cut(Stage Advance V-Cut)의 특징 및 현장적용 사례 연구)

  • Kim, Dong-Hyun;Lee, Sang-Pil;Lee, Hun-Yeon;Lee, Tae-Ro;Jeon, Seok-Won
    • Explosives and Blasting
    • /
    • v.25 no.1
    • /
    • pp.31-43
    • /
    • 2007
  • In most tunnel constructions in South Korea, blasting has been widely used as an excavation method. In tunnel blasting, the center-cut to induce first free surface is very important for enhancing excavation efficiency and reducing vibration caused by exploding. This paper introduces new center-cut method named SAV-cut (Stage Advance V-cut) developed on the concept of V-cut. Significant features of SAV-cut are the center hole and stepwise ignition. Many field tests and numerical analysis were carried out to analyze the mechanical behavior and blasting vibration. From the results, the newly developed SAV-cut was proved as an effective center-cut method for both increasing blasting efficiency and decreasing blasting vibration.

Seismic performance evaluation of Precast Concrete Lining (PCL) using the 1/5 scale down model test (1/5축소 모형실험에 의한 조립식 터널라이닝 (PCL)의 내진성능 평가)

  • Lee, Yong-Jun;Chung, Hyung-Sik;Lee, Doo-Hwa;Jo, Byung-Wan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.61-70
    • /
    • 2004
  • Precast Concrete Lining (PCL) is invented in order to resolve the problem of the cast-in-place concrete lining in Norway, However PCL could not consider the effect of earthquake because an earthquake rarely occurs in the region of Northern Europe, Consequently, the analysis of the effect of earthquake on PCL should be made before introducing PCL to Korea. The purpose of this research is to evaluate the stability of tunnel applying PCL in the case of earthquake. To evaluate the seismic performance of PCL, we used shaking table apparatus by 1/5 scale down model. The result of this research is as shows that deep tunnells satisfied for Korea seismic design criteria.

  • PDF

Analytical Study of Shear Capacity for Large-Diameter Concrete-Filled Steel Tubes (CFT) (대구경 콘크리트 충전형 합성기둥의 전단성능에 관한 해석적 연구)

  • Jung, Eun Bi;Yeom, Hee Jin;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.435-445
    • /
    • 2015
  • Concrete filled steel tube(CFT), which has superior ductility and strength, is used for building column, bridge piers of ocean structure. Shear design equations of CFT existing in structural design provisions are excessively conservative. It has an effect on constructability and the economics of CFT. However, to suggest the reasonable shear design equation, experimental studies on the shear capacity of CFT have been rarely conducted. This study is analytical research to suggest improved shear design equations of large-diameter concrete-filled steel tubes. This analytical research was conducted to apply finite element analysis model of CFT based on the prior research. It was verified by comparison with prior test results. The verified model was used for parameter studies to estimate the influence of overhang length, concrete compressive strength and diameter-thickness ratio on shear strength.

Structural Behavior of Concrete Girder Continuous Bridges Strengthened with External Tendons Considering the Efficiency at Negative Moment Region (부모멘트부의 효율성을 고려한 외부강선으로 보강된 콘크리트 거더 연속교의 거동)

  • Han, Man-Yop;Cho, Byeong-Du;Jeon, Se-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.555-564
    • /
    • 2013
  • An effective method was proposed in this study which can improve the strengthening effect of continuous girder bridges by external tendons. The improvement of the proposed strengthening method in comparison with conventional methods was analyzed by applying equivalent load concept. In order to verify the strengthening effect, the enhancement of load-carrying capacity achieved by external prestressing was investigated through the test of continuous beams that were or were not strengthened by the external prestressing. The continuous beams were fabricated by making the deck slab continuous according to general construction practice of an actual concrete girder bridge. The test results showed that the deflections and strains of the strengthened beam were significantly reduced when comparing with those of the non-strengthened beam for the same level of external loads, and the stiffness of the member increased by strengthening. In particular, it was verified that the proposed method can effectively reduce the tensile stresses of the deck caused by negative moment at the intermediate supports of a continuous bridge.

Evaluation of Reducing Cross Section of the Partial Drainage Shield Tunnel Segment using the Model Experiments (축소모형실험을 통한 부분배수 쉴드터널의 세그먼트 단면 축소 가능성 평가)

  • Ma, Sang Joon;Lee, Young Sub;Kim, Dong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.387-396
    • /
    • 2015
  • The existing shield tunnel has constructed in the concept of non-drainage uniformly, but the leak has become a problem in the construction and management. The Shield tunnel design allowed for the water and earth pressure bring about the increasing segment thickness and the construction costs. In order to improve these problems, the study of the partial drainage shield tunnel is in progress. In this study, th model experiment was performed to confirm the possibility of the partial drainage shield tunnel. And the water and earth pressure was measured in drainage and undrained condition. Based on the results of model experiments, the effect of water pressure reduction was confirmed by reviewed the structure stability of the real design case.

Identifying Considerations for Developing SLAM-based Mobile Scan Backpack System for Rapid Building Scanning (신속한 건축물 스캔을 위한 SLAM기반 이동형 스캔백팩 시스템 개발 고려사항 도출)

  • Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.312-320
    • /
    • 2020
  • 3D scanning began in the field of manufacturing. In the construction field, a BIM (Building Information Modeling)-based 3D modeling environment was developed and used for the overall construction, such as factory prefabrication, structure construction inspection, plant facility, bridge, tunnel structure inspection using 3D scanning technology. LiDARs have higher accuracy and density than mobile scanners but require longer registration times and data processing. On the other hand, in interior building space management, relatively high accuracy is not needed, and the user can conveniently move with a mobile scan system. This study derives considerations for the development of Simultaneous Localization and Mapping (SLAM)-based Scan Backpack systems that move freely and support real-time point cloud registration. This paper proposes the mobile scan system, framework, and component structure to derive the considerations and improve scan productivity. Prototype development was carried out in two stages, SLAM and ScanBackpack, to derive the considerations and analyze the results.