• Title/Summary/Keyword: 시공불량

Search Result 157, Processing Time 0.032 seconds

A Study on the Ground Settlement and Reinforcement Measures in the Case of Tunnelling at the Yangsan Fault (양산단층대 터널시공에서 침하량 및 보강대책에 대한 연구)

  • Jung, Hyuksang;Kim, Hyeyang;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.35-48
    • /
    • 2009
  • An excessive ground displacement occurs with excavating tunnel in a fault zone because the fault has properties of soft ground in generally. It may have had a bad influence to adjacent structure. So, rapid reduction of ground strength by groundwater inflow should be prevented. It must be established for an impervious and reinforcing effect of ground to ensure a tunnel stability. The ground settlement and reinforcing effects were estimated by numerical analyses on tunnel through 570 m sector in Yangsan fault zone of Keongbu high-speed railway. Settlements evaluated by numerical analysis is similar to those calculated by using equation of Loganathan & Poulo. It was shown that reliable estimate of ground settlement by applying a prediction equation is possible. Applicability of adopted tunnel reinforcement method in fault zone was investigated by results of pilot construction and numerical analysis. Results from this study indicate that the adopted reinforcement method make tunnel displacements and member stresses restrain in design criteria.

  • PDF

Studies on the Landscape Conservation Measures of the Radial Roadsides in Seoul Area (조경녹화사방(造景綠化砂防)에 관(關)한 연구(硏究))

  • Woo, Bo-Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.28 no.1
    • /
    • pp.67-96
    • /
    • 1975
  • The serious consequences of the roadside erosion and its impact on sedimentation and deterioration of roadside landscape continue to be documented in Koreas. An analysis on the landscape conservation treatments was made through the field survey for the 8 radial roadsides around Seoul area. This was performed to identify and evaluate the present restoration measures, and to establish the practical standard measures for the landscape conservation treatments on the cut-and banking roadside slopes.

  • PDF

Application of Back Analysis for Tunnel Design by Modified In Situ Rock Model (현장암반 모델을 적용한 터널의 역해석)

  • Kim, Hak-Mun;Lee, Bong-Yeol;Hwang, Ui-Seok;Kim, Tae-Hun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.25-36
    • /
    • 2000
  • The purpose of this research work is to propose an analytical method of tunnel design based on reasonable site data. Therefore the proposed design method consists of monitoring data and Modified In Situ Rock Model. Also the Rock Mass Rating for very poor quality rock is very difficult to estimate, the balances between the ratings may no longer gives a reliable basis for the rock mass strength. But in reality Rock Mass Rating is only the property which can be obtained from face mapping records of the exposed tunnel face during construction stage. Evaluation of rock parameters for the actual design prior to tunnel construction should be corrected during tunnelling process in particularly complex ground conditions. This study intends to investigate application of in-situ rock model to soft rock tunnelling (weathered rock) by face mapping results and site measurement data that are obtained at the costraction site of Seoul Subway Tunnel. For the preparation of more reliable ground parameters, the Rock Mass Rating values for the weathered rocks were modified and readjusted in accordance with the measurement data. The modified input parameters obtained by the proposed method are used for the prediction of the tunnel behavior at subsequent construction stages. The results of this study revealed that more reasonable feed back tunnel analysis can be possible as suggested. Ample measurement data would be able to confirm the new proposed technique in this research work.

  • PDF

A Study on Engineering Characteristics of Weak Rock Ground happened TBM Jaming accident in Tunnelling (TBM 터널 굴진시 Jamming이 발생되는 지반의 공학적 특성에 대한 연구)

  • Yu, Gil-Hwan
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.45
    • /
    • pp.60-70
    • /
    • 2008
  • Mechanized tunnelling by TBMs has been extensively adopted for last two decades. Nevertheless, only few case histories have been reported. Unlike NATM tunnels, the case histories of the weak zone have been seldom reported for the mechanized tunnelling, even in the other countries. In this study, a collapse of TBM tunnel occurred in the severely altered weak rock zones between volcaniclastic rocks and granitic rocks was briefly described. A systematic geotechnical investigation, which was performed to examine the cause of the collapse, was carried out at the site and then characteristics of the rocks in the zones were evaluated. Moreover, This study propose a guide line of estimateing the possibility of collapse in TBM tunnels through comparing experimental results with surveying results of general rocks.

  • PDF

A Study on the Collapse Pattern of Road Tunnel under Construction (도로 터널 사공중 발생된 붕락형태 분석 연구)

  • Lee, Su-Gon;Kim, Nag-Young;Jeon, Bok-Hyeon
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.115-123
    • /
    • 2007
  • Recently, accelerating population and advanced economy result in extending old freeways and constructing new freeways. To make a good freeway shape, tunnel constructions are also rapidly increasing. Therefore, a possibility of a collapse during a tunnel excavation is getting higher in a proportionate manner. Especially, tunnel excavation has increased in poor geological condition in order to maintain good alignment of road and the collapse of tunnel has often happened without reinforcement method. This research paper will analyze for ms and causes of the collapses for different geological conditions and applied reinforcement solutions by investigating typical collapse sites during highway tunnel constructions.

Case Study of Pipe Leak Detection Using Artificial Intelligence (인공지능(AI) 기반 상수도 누수탐사 사례 분석)

  • Tae Nam Moon;Chang Gun Shin;Bo Hyang Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.496-496
    • /
    • 2023
  • 상수도관의 노후화 등으로 발생하는 누수는 안정적인 급수운영을 저해하고 경제적 손실을 발생시킬 뿐만 아니라 지반 침하 등 2차 피해가 발생할 수 있다. 상수도관 누수는 배관 내·외부 부식으로 발생하는 핀홀(Pin Hole)로 인한 관통누수, 강관 용접 시 발생하는 시공불량, 볼트 및 고무패킹 등 부자재의 노후화, 굴착 등 작업에서 발생하는 물리적 충격 등 여러 원인으로 발생할 수 있다. 상수도관에서 누수가 발생할 경우, 관 내부수가 관 밖으로 유출되어 발생하는 파열음, 유출수와 지반과의 마찰로 인한 진동 및 소음 등이 발생할 수 있다. 청음식, 상관식 누수탐사와 같은 기존 누수탐사 방식은 전문가의 경험에 대한 의존도가 매우 높으며, 기존 장비의 특성상 비금속관 및 대구경관 등 특정 환경에서는 적용이 어려우며, 효율적인 탐사가 쉽지 않은 실정이다. 이에 대한 해결책으로 본 논문에서는 상수도 누수가 의심되는 구간을 대상으로 실시간 누수음 데이터 수집 및 인공지능(Artificial Intelligence) 분석을 실시하여 기존 조사방법보다 효율적이고 신뢰성 있는 누수탐사를 수행한 사례를 분석하고자 한다.

  • PDF

A Study on Construction Evaluation Criteria for Securing the Objectivity in Public Construction (공공공사 시공평가 항목의 객관성 확보를 위한 주요 개선 항목 도출에 관한 연구)

  • Seo, Se Deok;Kim, Ok Kyue;Park, Hyung Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.913-921
    • /
    • 2019
  • The government introduced the comprehensive evaluation bidding system with the goal of pursuing the best value and the global standard in 2016. However, for the evaluation criteria on the construction evaluation reflected to the comprehensive evaluation bidding system, the problems of the objectivity insufficiency, the inclusion of multiple subjective evaluation items, and the irrationality of the weight for each evaluation item are continue to be presented. The central office group, the local government, the relevant industry, and the expert group share recognition, but the solution is not derived. Hence, the major evaluation items to be improved were derived with the characteristics analyzed to secure the objectivity of the construction evaluation. For the analysis method, the standard deviation and the Fleiss Kappa analysis method were used by utilizing the characteristics that the construction evaluation criteria consist of all 4-point measures (good, average, insufficient, and poor). According to the result, the 10 evaluation items of the total 25 construction evaluation items were derived as the evaluation items to be improved. It was found in the analysis on the major characteristics of the derived evaluation items that the qualitative evaluation criteria such as 'Very Suitable' and 'Suitable' were commonly included in the detailed evaluation guidelines. Hence, as far as the future construction evaluation standards are concerned, the qualitative evaluation standards are sublated, and the improvement should be made mainly for the quantitative evaluation criteria enabling the objectivity assurance.

Performance Evaluation for All-In-One Construction Method of Curbstone and Gutter Using Formwork Rail and Jig (거푸집 레일과 지그를 이용한 경계석 및 측구의 일체형 시공법에 대한 성능평가)

  • Choi, Jae-Jin;Ko, Man-Gi;Kim, Kyoung-Ju;Choi, Khyung-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.525-534
    • /
    • 2010
  • A road curbstone is a structure installed at the boundary of the sidewalk and the street with the objectives of road drainage, drawing attention and such. The current general construction method of curbstones places foundation concrete for the curbstones first, waits until the concrete reaches the strength to support the curbstones, places the curbstones on top, and then places the gutter and rear filling concrete. Such method has the issues of poor compaction and weakened bond strength of concrete due to split placing of concrete, and causes the curbstones to easily separate due to vehicle impact or earth pressure, in turn creating maintenance costs and spoiling the aesthetics. To improve such conventional construction methods, an all-in-one method was developed using formwork rail and jig where both the curbstones and gutter can be worked at the same time, and to evaluate the structural performance, static tests of lateral loading test, pullout test, and bending test were executed, and dynamic tests such as pendulum test and actual vehicle impact test were executed. In all tests, the all-in-one construction method using formwork rail and jig was shown to be superior to the conventional construction method by the increase of construction quality and bond strength of concrete.

Mechanical Properties of Concrete using Alpha-Calcium Sulfate Hemihydrate (알파형 반수석고를 활용한 콘크리트의 역학적 특성)

  • Shin, Kyoung-Su;Kim, Gyu-Yong;Sung, Gil-Mo;Woo, Sang-Kyun;Lim, Byung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.72-79
    • /
    • 2019
  • Concrete is vulnerable to cracks due to volume changes caused by temperature changes, shrinkage during curing, external forces, or poor construction. In particular, concrete placed in electric power tunnel structures can generate cracks by a variety of factors. As a result, these tunnel structures require continuous maintenance. In this study, we investigated the mechanical properties of electric power tunnel concrete using alpha-calcium sulfate hemihydrate, which is an industrial byproduct that has excellent expansion performance. To compensate for the decrease in compressive strength when substituting alpha-calcium sulfate hemihydrate, based on previous research, we added 9% alpha-calcium sulfate hemihydrate and adjusted the amount of admixture while using the same amount of cement. We then evaluated the mechanical properties of the concrete. The results showed that the compressive strength of the concrete was higher than that of ordinary Portland cement (OPC), and the shrinkage of concrete was reduced by more than 30% compared to that of OPC. Therefore, adding 9% of alpha-calcium sulfate hemihydrate is expected to have a significant effect in reducing concrete cracks.

Structural Performance Evaluation of End-plate Connections According to Constructional Quality in P.E.B System (P.E.B 시스템에서 시공상태에 따른 엔드플레이트 접합부의 구조성능평가)

  • Lee, Eun-Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.461-468
    • /
    • 2012
  • P.E.B (Pre-Engineering Building) system means an economical system, which designs and uses optimal section proportion of tapered members according to the magnitude of bending moment. However, it is hard to adjust the friction type bolted joint in the joint of tapered member in the P.E.B system. End-plate connection is mainly used in this system due to that difficulty. Because P.E.B system has end-plate vertical defacts by heat welding deformation, a gap between end-plates and rafter or rib can be observed. In this study, an examination of construction stability was throughly performed and analyzed by the investigation of permissible internal force of bolts in end-plate connections under the bending moment using the end-plate's initial connection-defect (gap).