• Title/Summary/Keyword: 시공간적 특성

Search Result 698, Processing Time 0.031 seconds

Spatio-temporal Fluctuations with Influences of Inflowing Tributary Streams on Water Quality in Daecheong Reservoir (대청호의 시공간적 수질 변화 특성 및 호수내 유입지천의 영향)

  • Kim, Gyung-Hyun;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.158-173
    • /
    • 2012
  • The objectives of this study were to analyze the longitudinal gradient and temporal variations of water quality in Daecheong Reservoir in relation to the major inflowing streams from the watershed, during 2001~2010. For the study, we selected 7 main-stream sites of the reservoir along the main axis of the reservoir, from the headwater to the dam and 8 tributary streams. In-reservoir nutrients of TN and TP showed longitudinal declines from the headwater to the dam, which results in a distinct zonation of the riverine ($R_z$, M1~M3), transition ($T_z$, M4~M6), and lacustrine zone ($L_z$, M7) in water quality, as shown in other foreign reservoirs. Chlorophyll-a (CHL) and BOD as an indicator of organic matter, were maximum in the $T_z$. Concentration of total phosphorus (TP) was the highest (8.52 $mg\;L^{-1}$) on March in the $R_z$, and was the highest (165 ${\mu}g\;L^{-1}$) in the $L_z$ on July. Values of TN was the maximum (377 ${\mu}g\;L^{-1}$) on August in the $R_z$, and was the highest (3.76 $mg\;L^{-1}$) in the $L_z$ on August. Ionic dilution was evident during September~October, after the monsoon rain. The mean ratios of TN : TP, as an indicator of limiting factor, were 88, which indicates that nitrogen is a surplus for phytoplankton growth in this system. Nutrient analysis of inflowing streams showed that major nutrient sources were headwater streams of T1~T2 and Ockcheon-Stream of T5, and the most influential inflowing stream to the reservoir was T5, which is located in the mid-reservoir, and is directly influenced by the waste-water treatment plants. The key parameters, influenced by the monsoon rain, were TP and suspended solids (SS). Empirical models of trophic variables indicated that variations of CHL in the $R_z$ ($R^2$=0.044, p=0.264) and $T_z$ ($R^2$=0.126, p=0.054) were not accounted by TN, but were significant (p=0.032) in the $L_z$. The variation of the log-transformed $I_r$-CHL was not accounted ($R^2$=0.258, p=0.110) by $I_w$-TN of inflowing streams, but was determined ($R^2$=0.567, p=0.005) by $I_w$-TP of inflowing streams. In other words, TP inputs from the inflowing streams were the major determinants on the in-reservoir phytoplankton growth. Regression analysis of TN : TP suggested that the ratio was determined by P, rather than N. Overall, our data suggest that TP and suspended solids, during the summer flood period, should be reduced from the eutrophication control and P-input from Ockcheon-Stream should be controlled for water quality improvement.

An Analysis into the Characteristics of the High-pass Transportation Data and Information Processing Measures on Urban Roads (도시부도로에서의 하이패스 교통자료 특성분석 및 정보가공방안)

  • Jung, Min-Chul;Kim, Young-Chan;Kim, Dong-Hyo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.74-83
    • /
    • 2011
  • The high-pass transportation information system directly collects section information by using probe cars and therefore can offer more reliable information to drivers. However, because the running condition and features of probe cars and statistical processing methods affect the reliability of the information and particularly because the section travel time is greatly influenced by whether there has been delay by signals on urban roads or not, there can be much deviation among the collected individual probe data. Accordingly, researches in multilateral directions are necessary in order to enhance the credibility of the section information. Yet, the precedent studies related to high-pass information provision have been conducted on the highway sections with the feature of continuous flow, which has a limit to be applied to the urban roads with the transportational feature of an interrupted flow. Therefore, this research aims at analyzing the features of high-pass transportation data on urban roads and finding a proper processing method. When the characteristics of the high-pass data on urban roads collected from RSE were analyzed by using a time-space diagram, the collected data was proved to have a certain pattern according to the arriving cars' waiting for signals with the period of the signaling cycle of the finish node. Moreover, the number of waiting for signals and the time of waiting caused the deviation in the collected data, and it was bigger in traffic jam. The analysis result showed that it was because the increased number of waiting for signals in traffic jam caused the deviation to be offset partially. The analysis result shows that it is appropriate to use the mean of this collected data of high-pass on urban roads as its representative value to reflect the transportational features by waiting for signals, and the standard of judgment of delay and congestion needs to be changed depending on the features of signals and roads. The results of this research are expected to be the foundation stone to improve the reliability of high-pass information on urban roads.

Multi-modal Emotion Recognition using Semi-supervised Learning and Multiple Neural Networks in the Wild (준 지도학습과 여러 개의 딥 뉴럴 네트워크를 사용한 멀티 모달 기반 감정 인식 알고리즘)

  • Kim, Dae Ha;Song, Byung Cheol
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.351-360
    • /
    • 2018
  • Human emotion recognition is a research topic that is receiving continuous attention in computer vision and artificial intelligence domains. This paper proposes a method for classifying human emotions through multiple neural networks based on multi-modal signals which consist of image, landmark, and audio in a wild environment. The proposed method has the following features. First, the learning performance of the image-based network is greatly improved by employing both multi-task learning and semi-supervised learning using the spatio-temporal characteristic of videos. Second, a model for converting 1-dimensional (1D) landmark information of face into two-dimensional (2D) images, is newly proposed, and a CNN-LSTM network based on the model is proposed for better emotion recognition. Third, based on an observation that audio signals are often very effective for specific emotions, we propose an audio deep learning mechanism robust to the specific emotions. Finally, so-called emotion adaptive fusion is applied to enable synergy of multiple networks. The proposed network improves emotion classification performance by appropriately integrating existing supervised learning and semi-supervised learning networks. In the fifth attempt on the given test set in the EmotiW2017 challenge, the proposed method achieved a classification accuracy of 57.12%.

Connection between Fourier of Signal Processing and Shannon of 5G SmartPhone (5G 스마트폰의 샤논과 신호처리의 푸리에의 표본화에서 만남)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.69-78
    • /
    • 2017
  • Shannon of the 5G smartphone and Fourier of the signal processing meet in the sampling theorem (2 times the highest frequency 1). In this paper, the initial Shannon Theorem finds the Shannon capacity at the point-to-point, but the 5G shows on the Relay channel that the technology has evolved into Multi Point MIMO. Fourier transforms are signal processing with fixed parameters. We analyzed the performance by proposing a 2N-1 multivariate Fourier-Jacket transform in the multimedia age. In this study, the authors tackle this signal processing complexity issue by proposing a Jacket-based fast method for reducing the precoding/decoding complexity in terms of time computation. Jacket transforms have shown to find applications in signal processing and coding theory. Jacket transforms are defined to be $n{\times}n$ matrices $A=(a_{jk})$ over a field F with the property $AA^{\dot{+}}=nl_n$, where $A^{\dot{+}}$ is the transpose matrix of the element-wise inverse of A, that is, $A^{\dot{+}}=(a^{-1}_{kj})$, which generalise Hadamard transforms and centre weighted Hadamard transforms. In particular, exploiting the Jacket transform properties, the authors propose a new eigenvalue decomposition (EVD) method with application in precoding and decoding of distributive multi-input multi-output channels in relay-based DF cooperative wireless networks in which the transmission is based on using single-symbol decodable space-time block codes. The authors show that the proposed Jacket-based method of EVD has significant reduction in its computational time as compared to the conventional-based EVD method. Performance in terms of computational time reduction is evaluated quantitatively through mathematical analysis and numerical results.

The Usefulness of a Wearable Smart Insole for Gait and Balance Analyses After Surgery for Adult Degenerative Scoliosis: Immediate and Delayed Effects (척추측만증 환자의 수술 효과 평가 수단으로서 웨어러블 스마트 깔창을 이용한 보행분석의 유용성)

  • Seo, Min Seok;Shin, Myung Jun;Kwon, Ae Ran;Park, Tae Sung;Nam, Kyoung Hyup
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.2
    • /
    • pp.184-192
    • /
    • 2020
  • This study presents a gait analysis method (including time series analysis) using a smart insole as an objective and quantitative evaluating method after lumbar scoliosis surgery. The participant is a degenerative lumbar scoliosis patient. She took 3-min-gait-test four times(before and 8, 16, and 204-days after surgery) and 6-min-gait-test once(204-days after surgery) with smart-insoles in her shoes. Each insole has 8-pressure sensors, an accelerometer, and a gyroscope. The measured values were used to compare the characteristics of gait before and after surgery. The analysis showed that all of the patient's gait parameters improved after surgery. And after 6 months, the gait was more stable. However, after long walk, the swing duration of one leg was slightly shorter than that of the other again. It was a preclinical problem that could not be found in the visual examination by the practitioner. With this analysis method we could evaluate the improvement of patient quantitatively and objectively. And we could find a preclinical problem. This analysis method will lead to the studies that define and distinguish gait patterns of certain diseases, helping to determine appropriate treatments.

Trajectory Index Structure based on Signatures for Moving Objects on a Spatial Network (공간 네트워크 상의 이동객체를 위한 시그니처 기반의 궤적 색인구조)

  • Kim, Young-Jin;Kim, Young-Chang;Chang, Jae-Woo;Sim, Chun-Bo
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.3
    • /
    • pp.1-18
    • /
    • 2008
  • Because we can usually get many information through analyzing trajectories of moving objects on spatial networks, efficient trajectory index structures are required to achieve good retrieval performance on their trajectories. However, there has been little research on trajectory index structures for spatial networks such as FNR-tree and MON-tree. Also, because FNR-tree and MON-tree store the segment unit of moving objects, they can't support the trajectory of whole moving objects. In this paper, we propose an efficient trajectory index structures based on signatures on a spatial network, named SigMO-Tree. For this, we divide moving object data into spatial and temporal attributes, and design an index structure which supports not only range query but trajectory query by preserving the whole trajectory of moving objects. In addition, we divide user queries into trajectory query based on spatio-temporal area and similar-tralectory query, and propose query processing algorithms to support them. The algorithm uses a signature file in order to retrieve candidate trajectories efficiently Finally, we show from our performance analysis that our trajectory index structure outperforms the existing index structures like FNR-Tree and MON-Tree.

  • PDF

Estimation of Spatial Evapotranspiration Using Terra MODIS Satellite Image and SEBAL Model - A Case of Yongdam Dam Watershed - (Terra MODIS 위성영상과 SEBAL 모형을 이용한 공간증발산량 산정 연구 - 용담댐 유역을 대상으로 -)

  • Lee, Yong-Gwan;Kim, Sang-Ho;Ahn, So-Ra;Choi, Min-Ha;Lim, Kwang-Suop;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.90-104
    • /
    • 2015
  • The purpose of this paper is to build a spatio-temporal evapotranspiration(ET) estimation model using Terra MODIS satellite image and by calibrating with the flux tower ET data from watershed. The fundamentals of spatial ET model, Surface Energy Balance Algorithm for Land(SEBAL) was adopted and modified to estimate the daily ET of Yongdam Dam watershed in South Korea. The daily Normalized Distribution Vegetation Index(NDVI), Albedo, and Land Surface Temperature(LST) from MODIS and the ground measured wind speed and solar radiation data were prepared for 2 years(2012-2013). The SEBAL was calibrated with the forest ET measured by Deokyusan flux tower in the study watershed. Among the model parameters, the important parameters were surface albedo, NDVI and surface roughness in order for momentum transport during calculation of sensible heat flux. As a result of the final calibration, the monthly averaged albedo and NDVI were used because the daily values showed big deviation with unrealistic change. The determination coefficient($R^2$) between SEBAL and flux data was 0.45. The spatial ET reflected the geographical characteristics showing the ET of lowland areas was higher than the highland ET.

Development and Application of the SWAT HRU Mapping Module for Estimation of Groundwater Pollutant Loads for Each HRU in the SWAT Model (SWAT HRU별 지하수 오염부하량 산정을 위한 SWAT HRU Mapping Module 개발 및 적용)

  • Ryu, Ji Chul;Mun, Yuri;Moon, Jongpil;Kim, Ik Jae;Ok, Yong Sik;Jang, Won Seok;Kang, Hyunwoo;Lim, Kyoung Jae
    • Journal of Environmental Policy
    • /
    • v.10 no.1
    • /
    • pp.49-70
    • /
    • 2011
  • The numerous efforts have been made in understanding generation and transportation mechanism of nonpoint source pollutants from agricultural areas. Also, the water quality degradation has been exacerbated over the years in many parts of Korea as well as other countries. Nonpoint source pollutants are transported into waterbodies with direct runoff and baseflow. It has been generally thought that groundwater quality is not that severe compared with surface water quality. However its impacts on groundwater in the vicinity of stream quality is not negligible in agricultural areas. The SWAT model has been widely used in hydrology and water quality studies worldwide because of its flexibilities and accuracies. The spatial property of each HRU, which is the basic computational element, is not presented. Thus, the SWAT HRU mapping module was developed in this study and was applied to the study watershed to evaluate recharge rate and $NO_3-N$ loads in groundwater. The $NO_3-N$ loads in groundwater on agricultural fields were higher than on forests because of commercial fertilizers and manure applied in agricultural fields. The $NO_3-N$ loads were different among various crops because of differences in crop nutrient uptake, amount of fertilizer applied, soil properties in the field. As shown in this study, the SWAT HRU mapping module can be efficiently used to evaluate the pollutant contribution via baseflow in agricultural watershed.

  • PDF

Lessons from Cross-Scale Studies of Water and Carbon Cycles in the Gwangneung Forest Catchment in a Complex Landscape of Monsoon Korea (몬순기후와 복잡지형의 특성을 갖는 광릉 산림유역의 물과 탄소순환에 대한 교차규모 연구로부터의 교훈)

  • Lee, Dong-Ho;Kim, Joon;Kim, Su-Jin;Moon, Sang-Ki;Lee, Jae-Seok;Lim, Jong-Hwan;Son, Yow-Han;Kang, Sin-Kyu;Kim, Sang-Hyun;Kim, Kyong-Ha;Woo, Nam-Chil;Lee, Bu-Yong;Kim, Sung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.149-160
    • /
    • 2007
  • KoFlux Gwangneung Supersite comprises complex topography and diverse vegetation types (and structures), which necessitate complementary multi-disciplinary measurements to understand energy and matter exchange. Here, we report the results of this ongoing research with special focuses on carbon/water budgets in Gwangneung forest, implications of inter-dependency between water and carbon cycles, and the importance of hydrology in carbon cycling under monsoon climate. Comprehensive biometric and chamber measurements indicated the mean annual net ecosystem productivity (NEP) of this forest to be ${\sim}2.6\;t\;C\;ha^{-1}y^{-1}$. In conjunction with the tower flux measurement, the preliminary carbon budget suggests the Gwangneung forest to be an important sink for atmospheric $CO_2$. The catchment scale water budget indicated that $30\sim40%$ of annual precipitation was apportioned to evapotranspiration (ET). The growing season average of the water use efficiency (WUE), determined from leaf carbon isotope ratios of representative tree species, was about $12{\mu}mol\;CO_2/mmol\;H_2O$ with noticeable seasonal variations. Such information on ET and WUE can be used to constrain the catchment scale carbon uptake. Inter-annual variations in tree ring growth and soil respiration rates correlated with the magnitude and the pattern of precipitation during the growing season, which requires further investigation of the effect of a monsoon climate on the catchment carbon cycle. Additionally, we examine whether structural and functional units exist in this catchment by characterizing the spatial heterogeneity of the study site, which will provide the linkage between different spatial and temporal scale measurements.

Report about First Repeated Sectional Measurements of Water Property in the East Sea using Underwater Glider (수중글라이더를 활용한 동해 최초 연속 물성 단면 관측 보고)

  • GYUCHANG LIM;JONGJIN PARK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.1
    • /
    • pp.56-76
    • /
    • 2024
  • We for the first time made a successful longest continuous sectional observation in the East Sea by an underwater glider during 95 days from September 18 to December 21 2020 in the Korea along the 106 Line (129.1 °E ~ 131.5 °E at 37.9 °N) of the regular shipboard measurements by the National Institute of Fishery Science (NIFS) and obtained twelve hydrographic sections with high spatiotemporal resolution. The glider was deployed at 129.1 °E in September 18 and conducted 88-days flight from September 19 to December 15 2020, yielding twelve hydrographic sections, and then recovered at 129.2 °E in December 21 after the last 6 days virtual mooring operation. During the total traveled distance of 2550 km, the estimated deviation from the predetermined zonal path had an average RMS distance of 262 m. Based on these high-resolution long-term glider measurements, we conducted a comparative study with the bi-monthly NIFS measurements in terms of spatial and temporal resolutions, and found distinguished features. One is that spatial features of sub-mesoscale such as sub-mesoscale frontal structure and intensified thermocline were detected only in the glider measurements, mainly due to glider's high spatial resolution. The other is the detection of intramonthly variations from the weekly time series of temperature and salinity, which were extracted from glider's continuous sections. Lastly, there were deviations and bias in measurements from both platforms. We argued these deviations in terms of the time scale of variation, the spatial scale of fixed-point observation, and the calibration status of CTD devices of both platforms.