• Title/Summary/Keyword: 시공간에 대한 해석

Search Result 963, Processing Time 0.032 seconds

A Study on Applicability of Pre-splitting Blasting Method According to Joint Frequency Characteristics in Rock Slope (암반사면의 절리빈도 특성에 따른 프리스플리팅 발파공법의 적용성 연구)

  • Kim, Shin;Lee, Seung-Joong;Choi, Sung-O.
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.1-16
    • /
    • 2010
  • This study focuses on the phenomenon that the blast damaged zone developed on rock slope surfaces can be affected by joint characteristics rather than by explosive power when the pre-splitting is applied to excavate a jointed rock slope. The characteristics of rock joints on a slope were investigated and categorized them into 4 cases. Also an image processing system has been used for comparing the distribution pattern of rock blocks. From this investigation, it was found that the rock blocks bigger than 2,000 mm occupied 42% in the case of single joint set and it showed the well efficiency of pre-splitting blast. In cases of 2~3 parallel joint sets and 2~3 intersecting joint sets are developed on rock surfaces, the rock blocks in the range of 1,000~2,000 mm occupied 43.6% and 35.8%, respectively, and it showed that the efficiency of pre-splitting was decreased. When more than 3 joint sets are randomly developed, however, the rock blocks in the range of 250~500 mm occupied 35% and there was no block bigger than 1,000 mm. This denotes that the blasting with pre-splitting was not effective. The numerical analysis using PFC2D showed that the blast damaged zone in a rock mass could be directly influenced by the pre-splitting. It is, therefore, required to investigate the discontinuity pattern on rock surfaces in advance, when the pre-splitting method is applied to excavate jointed rock slopes and to apply a flexible blating design with a consideration of the joint characteristics.

A Case Study on the Analysis of Cause and Characteristics of a Landslide at the Sedimentary Rock Area (퇴적암 지역에서의 산사태 원인 및 특성 분석에 대한 사례연구)

  • Song, Young-Suk;Hong, Won-Pyo
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.101-113
    • /
    • 2007
  • A landslide was occurred due to soil cutting for construction to expand the Donghae express highway in Dong-hae-City, Korea. The total area of the landslide was about $9,550m^2$ with 100 m of width and 87m of height. The landslide was occurred due to the internal factor of the unstable geological structure including the clay layer and the external factor of continuous heavy rainfalls. As the result of field instrumentation during the landslide, the horizontal displacement of the slope ground increases with increasing the accumulated rainfall by continuous rainfall during the rainy season. Also, the depth of sliding failure was decided by the horizontal displacement distribution during landslide occurrence. It makes sure that the horizontal displacement starts from the depth of sliding failure and the depth of sliding failure matches well with the location of the clay layer. As the slope stability analysis using Bishop's Simplified Method at the landslide area, the safety factor of slope during the rainy season was 0.53. This safety factor of slope was enough to trigger the landslide at this area. The depth of sliding failure obtained by analytical method matches well with the depth of the clay layer.

Simple Model for Preliminary Design of Hexagrid Tall Building Structure (헥사그리드 고층건물구조의 예비설계를 위한 단순모델)

  • Lee, Han-Ul;Kim, Young-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.13-20
    • /
    • 2017
  • High-rise building shapes are changing from orthogonal to irregular form and the current trend is to arrange members in geometric grid-patterns at the perimeter of buildings. This study proposes a simple model for the preliminary design of a hexagrid high-rise building. The size of the cross section is set to be different at each module and hexagrid unit, which is different from the previous studies in which all hexagrid members were the same. To examine the effect of hexagrid size on structural performance, 60-story hexagrid buildings with 1-, 2- and 4-story high modules are designed and analyzed. Maximum lateral displacement, steel tonnage, load carrying percentage of perimeter frame and combined strength ratio are compared for 15 buildings. As the lateral load carrying capacity of hexagrid structure was inferior to a diagrid structural system, proper lateral stiffness should be allocated to the core frame in a hexagrid structure. The best ratio of flexural to shear deformation was 4 and larger unit size was better in considering constructional cost and structural efficiency. As the maximum lateral displacements of the buildings were within 84%~108% of the limit, the proposed method seems to be applicable to preliminary design of hexagrid buildings.

Initial Imperfection and Axial Strength of Struts with Octagonal Hollow Section fabricated from HR Plate (열연강판 팔각강관 버팀보의 초기편심과 축방향 압축강도)

  • Jo, Jae Byung
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Developed in this study were Octagonal-hollow-section(OHS) struts, whose compressive strengths against flexural and local buckling is higher than H-shape or rectangular-hollow-section(RHS) struts with the same unit weight. OHS members are also advantageous in handling and storing compared to circular hollow sections(CHS). OHS members were fabricated from HR Plates by cold forming and fillet welding. 5 numbers of 20m long OHS struts were assembled, each of which consist of two 9.6m long OHS member and two end connection elements made of cast iron. The compressive strength of the OHS strut was evaluated by comparing the test results, design codes and FEM analysis each other. Test results show that all of the struts have almost same or larger compressive strength than Korean Road Bridge Design Code(KRBDC) (2012). The initial imperfections can be estimated by using measured strains and are turned out to be less than L/450 for all the struts tested. The results of FEM analysis show that the variation of initial imperfection has less effects on the compressive strength for struts with vertical surcharge than for those with self-weight only, while the strength decreases as the initial imperfection increases. As the result of this study, the allowable initial imperfection for 20m long OHS struts is recommended to be less than L/350 on job sites.

A Study on the Development of Floor-Fixed Standpipe Sway Brace for Narrow Space (협소공간전용 바닥고정형 입상관 흔들림방지버팀대 개발에 관한 연구)

  • Jin, Se-Young;Choi, Su-Gil;Park, Sang-Min;Yeon, Tae-Young;Kim, Chang-Su;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.47-54
    • /
    • 2020
  • This paper proposes a solution to the problems of constructing and installing sway braces for existing standpipes in narrow spaces and pits. The study develops a floor-fixed sway brace for a narrow space that can support the ground area under horizontal seismic loads (X-axis, Y-axis) as well as vertical seismic loads (Z-axis). The results of structural analysis using SolidWorks simulation showed that the eccentric load was generated in the first design according to the anchored position along the vertical direction, and the problem of exceeding the allowable stress of the material along the horizontal and vertical directions. In the second design model, deformation caused by the eccentric load along the vertical direction, similar to the first design model, did not occur. The maximum strain rate was 0.17%, which is approximately 12.84% less than the first design model (Maximum strain rate of 13.01%). It was confirmed that the structural stability and durability improved. Compressive and tensile load testing of the prototypes showed that all of them meet the performance criteria of the standard.

A study on the effect of support structure of steel rib in partitioning excavation of tunnel (터널 상·하반 분할 굴착 시 강지보재 지지구조 효과에 대한 연구)

  • Kim, Ki-Hyun;Kim, Yeon-Deok;Hwang, Beoung-Hyeon;Choi, Yong-Kyu;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.543-561
    • /
    • 2020
  • This paper is the result of the study on the effect of the support structure of the tunnel steel rib. In tunnel excavation, the top and bottom half excavation methods result in subsidence of steel rib reinforcement due to insufficient support of steel rib reinforcement when the ground is poor after excavation. The foundation of the steel rib installed in the upper half excavates the bottom part of the base, causing the subsidence to occur due to various effects such as internal load and lateral pressure. As a result, the tunnel is difficult to maintain and its safety is problematic. To solve these problems, steel rib support structures have been developed. For the purpose of verification, the behavior of the supporting structure is verified by model experiments reduced to shotcrete and steel rib material similarity, the numerical analysis of ΔP and ΔP generated by bottom excavation by Terzaghi theoretical equation. As a result, it was found that the support structure of 20.100~198.423 kN is required for the 10~40 m section of the depth for each soil of weathered soil~soft rock. In addition, as a result of the reduced model experiment, a fixed level of 50% steel rib deposit of steel rib support structure was installed. The study shows that the installation of steel rib support structures will compensate for uncertainties and various problems during construction. It is also thought that the installation of steel rib support structure will have many effects such as stability, economy, and air reduction.

Characteristics of the Earth Pressure Magnitude and Distribution in Jointed Rockmass (절리가 형성된 암반지층에서 발생된 토압의 크기 및 분포특성)

  • Son, Moorak;Yoon, Cheolwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.203-212
    • /
    • 2011
  • This paper investigates the caharactheristics of the earth pressure magnigue and distribution in jointed rockmass for a safe and economic design and construction of earth retaining structures installed in rock stratum. For this purpose, this study will first investigate the limitations and problems of the existing earth pressure studies and then to overcome them th study will conduct the discontinuum numerical parametric studies based on the Discrete Element Method (DEM), which can consider the joint characteristics in rock stratum. The controlled parameters include rock type and joint conditions (joint shear strength and joint angle), and the magnitude and distribution characteristics of earth pressure have been investigated considering the interactions between the ground and the retaining structures. In addition, the comparison between the earth pressures induced in rock stratum and Peck's earth pressure for soil ground has been carried out. From the comparison, it is found that the earth pressure magnitude and distribution in jointed rockmass has been highly affected by rock type and joint condition and has shown different characteristics compared with the Peck's empirical earth pressure. This result would hereafter be utilized as an important information and a useful data for the assessment of earth pressure for designing a retaining structures installed in jointed rockmass.

Fatigue Capacity Evaluation of Hinge Type Connection System for a Hybrid Truss Bridge (복합 트러스교 힌지형 격점 구조의 피로 성능 평가)

  • Jung, Kwang-Hoe;Yi, Jong-Won;Lee, Sang-Hyu;Kim, Jay Jang-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.303-310
    • /
    • 2011
  • To replace a steel box bridge for constructions of medium span bridges in Korea, the Hybrid Truss Bridge (HTB) is being considered as an alternative bridge type. The core technology of HTB is the connection joint that links the concrete slabs and steel truss pipes. Various construction companies in Japan have developed unique connection systems and applied to the real bridge constructions after verifying their performances through the experimental evaluation. In this study, the fatigue test of a hybrid truss girder has been performed in order to verify the newly proposed hinge type connection joint`s static and fatigue capacities. Through this fatigue test results, it is founded that the structural detail to improve the fatigue capacity should be developed. The hinge connection system with circular ribs has been proposed by means of structural finite element analyses. And then the fatigue test for this connection joint has been performed and it is proved that this connection joint has enough fatigue capacity. Finally, it is expected that the hinge connection system with circular ribs developed by in this study can be easily applied to the real bridge.

Evaluation of Shear Capacity on PC Girder-PC Beam Joint (PC 큰 보-PC 작은 보 접합부의 전단성능 평가)

  • Moon, Jeong Ho;Oh, Young Hun;Lim, Jae Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.166-174
    • /
    • 2011
  • The object of this study is to evaluate the structural shear capacity of the PC girder-PC beam joint. The dapped end of PC beam and the ledger of PC girder are usually designed to design load. If the end of PC beam can be designed with continuous end, the dapped end of PC beam and the ledger of PC girder do not need to resist to all loads except dead load and construction load. The experimental program was carried out with 7 specimens containing the variable factors as the anchored method of the hanger bar, design load, be or not exist of ledger bars. As a result, the continuity of the dapped end and the ledger were ensured their safety although the design load was only the dead load and the construction load. The shear critical section was expanded toward the effective depth d, the distance from the supported position of the beam. If the ledger is designed according to PCI Design Handbook, the structural system of the ledger is as to the cantilever slab system. But the ledger of this study is as to the 3 side fixed slab system. Therefore the design of the ledger by PCI Design Handbook will lead to highly conservative results.

Experimental Study of Collapse Delay Effect of Riprap on Dam Slope (사력댐 사석 보호공의 붕괴 지연 효과에 대한 실험 연구)

  • Jeong, Seokil;Kim, Seung Wook;Kim, Hong Taek;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.1
    • /
    • pp.31-38
    • /
    • 2018
  • The 99.1% of small dam and most of the levees in Korea are soil dam which can be constructed with lower cost and less effort compared with ones made of concrete. However, they are so vulnerable to overflow. Sudden collapses of these strucrues lead to increase flow rate rapidly, which may cause catastrophic problems in downstream regions. In this study, the experimental study on the collapse delay effect of riprap that was laid on slope of soil levee was carried out. A prismatic rectangular open channel was used and three different sizes of the riprap were installed on slope of a scaled earth dam. A new formula for the collapse time of the levee with the installation of riprap was presented, using the previous researches and the dimensional analysis. In this process, an unsteady flow condition was considered to derive the deviation time of the riprap. And additional experiments were conducted to understand the effect of reinforcement of riprap, and it was found that the reinforcement of riprap was more effective than twice sizing of intial riprap. If the collapse time is delayed, EAP (Emergency Action Plan) and forecasting can greatly reduce the degree of flood damage. Also, it will be meaningful that the results of this study are used for river design.