• Title/Summary/Keyword: 시공간부호

Search Result 125, Processing Time 0.027 seconds

Performance Comparisons of Quasi-orthogonal Space-time Block Codes Concatenated with Turbo Codes (터보부호와 연접된 준직교 시공간 블록부호의 성능 비교)

  • 김현일;박효열;황금찬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10c
    • /
    • pp.121-123
    • /
    • 2004
  • 시공간 블록부호는 송신단에서 여러 개의 안테나를 사용하여 무선 통신의 신뢰도를 높인다. 그런데 4개의 송신안테나를 사용하는 시공간 블록부호는 다이버시티 차수 4와 전송률 1을 동시에 얻을 수 없다. 직교 시공간 블록부호는 다이버시티 차수 4를 유지하지만 전송률에서 손해를 보는 반면, 준직교 시공간 블록부호는 다이버시티 이득에서 손해를 보면서 전송률 1을 유지한다. 본 논문에서는 준직교 시공간 블록부호의 복호기에서 최대 우도 복호 방법으로 비트별 연성결정값을 출력하고, 터보부호와 연접하여 다양한 전송률에서 직교 및 준직교 시공간 블록부호의 성능을 비교하였다.

  • PDF

A Study on layered Space Time Trellis codes for MIMO system based on Iterative Decoding Algorithm (MIMO 시스템에서 반복 복호 알고리즘 기반의 계층적 시공간 부호화 방식 연구)

  • Park, Tae-Doo;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.845-849
    • /
    • 2012
  • The next-generation wireless communication requires fast transmission speeds with various services and high reliability. In order to satisfy these needs we study MIMO system used layered space time coded system (LST) combining space time trellis codes (STTC) with turbo codes. In LST, two codes that are inner and outer codes are concatenated in the serial fashion. The inner codes are turbo Pi codes suggested in DVB-RCS NG system, and outer codes are STTC codes proposed by Blum. The interleaver technique is used to efficiently combine two codes. And we proposed and simulated that a full iteration method between turbo decoder and BCJR decoder to improve the performance instead of only processing inner-iteration turbo decoder. The simulation results of proposed effective layered method show improving BER performance about 1.3~1.5dB than conventional one.

Performance of OFDM using Beam-switching and Space-Time coding in Wireless Personal Area Network (무선 개인 영역망 환경에서 빔 스위칭과 시공간부호를 적용한 OFDM 전송방식의 성능)

  • Yoon, Seok-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.85-92
    • /
    • 2010
  • In this paper, we consider the orthogonal frequency division multiplexing (OFDM) based transmission incoorperating with beam-switching and space-time coding. Specifically, we consider three configurations; (1) the beamforming technique, (2) the spatial diversity technique and (3) their combination and evaluate the performance in wireless personal area network (WPAN) environment. For the beam-forming technique, we consider the beam-switching which is performed at RF front-end with a pre-defined set of beams and for the space-time coding, we consider the Alamauti scheme with antenna selection. For the combined scheme, we divide the antennas used into two group to generate two independent beams and apply the two-antenna Alamauti scheme over the two beams. For these three configurations, performance is evaluated in terms of the SNR gain.

BER Performance Analysis of Linear Orthogonal Space-Time Block Codes with Quadrature Amplitude Modulation in Quasi Static Rayleigh Fading Channel (QAM 변조방식을 갖는 선형 직교 시공간 블록 부호의 준정지 레일리 페이딩 채널에서의 비트 오율 성능 분석)

  • Kim Sang-Hyo;Yang Jae-Dong;No Jong-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6C
    • /
    • pp.575-581
    • /
    • 2006
  • In this paper, we first define one-dimensional component symbol error function (ODSEF) from the exact expression of the pairwise error probability of orthogonal space-time block codes (OSTBC). Using the ODSEF and the general bit error probability (BEP) expression for quadrature amplitude modulation (QAM) introduced by Cho and Yoon, the exact closed form expressions for the BEP of linear OSTBCs with QAM in slow-varying Rayleigh fading channel are derived.

Soft Decision Detection Method for Turbo-coded STBC Using High-order Modulation Schemes (고차원 변조 방식에서의 터보 부호화된 시공간 블록 부호 기술을 위한 최적의 연판정 검출 방법)

  • Kim, Young-Min;Kim, Soo-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6C
    • /
    • pp.562-571
    • /
    • 2010
  • Forward error correction (FEC) coding schemes using iterative soft decision detection (SDD) information are mandatory in most of the next generation wireless communication system, in order to combat inevitable channel imparirnents. At the same time, space-time block coding (STBC) schemes are used for the diversity gain. Therefore, SDD information has to be fed into FEC decoder. In this paper, we propose efficient SDD methods for turbo-coded STBC system using high order modulation such as QAM. We present simulation results of various SDD schemes for turbo-coded STBC systems, and show that the proposed methods can provide almost approximating performance to maximum likelihood detection with much less computational load.

Layered Turbo codes combined with space time codes for satellite systems (위성 시스템에서의 시공간 부호 기술과 결합된 계층적 터보 부호)

  • Kim, Young-Min;Kim, Soo-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.40-44
    • /
    • 2010
  • A layered coding scheme is one of the adaptive receiving techniques for unidirectional services such as multimedia broadcasting and multicasting services (MBMS), where we cannot utilize feedback information. The layered coding scheme can be used with hierarchical modulations by combining suitable code rates and modulation orders of each. In addition, it has been reported that hybrid and/or integrated satellite systems can effectively achieve transmit diversity gains by appropriate utilization of space time coding combined with turbo codes. This paper proposes a layered turbo coding schemes for hybrid and/or integrated satellite systems. We first introduce the system architecture and operational principle of the proposed scheme, and discuss the applicability.

Impact of Channel Variations and Channel Estimation Errors on the Error Performance of Convolutional Coded STBC Systems (길쌈 부호화 시공간 블록 부호 시스템의 오류 성능에 대한 채널 변화 및 채널 추정 오류의 영향)

  • Yun, Eunsik;Kim, Sun-Hyung;Park, Sangjoon;Kang, Byeong-Gwon
    • Journal of Digital Convergence
    • /
    • v.16 no.5
    • /
    • pp.231-237
    • /
    • 2018
  • This paper investigates the impact of the channel variations and channel estimation errors on the error performance of convolutional coded STBC systems. We consider the orthogonal Almouti STBC and the quasi-orthogonal Jafarkhani STBC, and the error performance of the convolutional coded STBC system is investigated according to the channel variation and channel estimation error via numerical simulations. Simulation results show that, if the channel variation speed is slow, time diversity effects improve the error performance compared to the static-channel cases. However, if the channel variation speed is fast, unlike ZF or MMSE detection, the conventional STBC detection has the significant performance degradation especially with the quasi-orthogonal Jafarkhani STBC. Further, the error performance of the system is significantly degraded as the channel estimation errors become stronger, regardless of the detection scheme and channel variation speed.

Performance Evaluation of Space-Time Codes and Channel Estimation in OFDM System for Wireless LANs (무선 LAN을 위한 OFDM 시스템에서 시공간 부호들의 성능 분석 및 채널 추정에 관한 연구)

  • Lee, Sang-Mun;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8B
    • /
    • pp.760-770
    • /
    • 2002
  • Transmit diversity is an efficient diversity technique to improve performance and spectrum efficiency in wireless communication . Coding scheme designed for the transmit diversity is called space-time coding. In this paper, we propose a training structure to apply the transmit diversity to improve the performance of IEEE802.11a OFDM systems. Based on this training structure, we propose a channel estimation scheme using curve fitting. Also we compare and evaluate the performance of space-time codes. The performance of both diversity using space-time codes and channel estimation scheme is investigated by computer simulation in quasi-static 2-ray rayleigh fading environment.

Study on the Construction Method of QC LDPC Codes in ST-BICM Systems for Full Diversity (시공간 비트 인터리브된 부호화 변조 시스템에서 최대 다이버시티를 달성하기 위한 준순환 저밀도 패리티 검사 부호의 생성 연구)

  • Kim, Sung-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3A
    • /
    • pp.151-156
    • /
    • 2012
  • In this paper, design of quasi-cyclic(QC) low-density parity-check codes is proposed to have full diversity for space-time bit-interleaved coded modulation(ST-BICM) systems. Necessary and sufficient conditions that the proposed scheme has full diversity are proved as the condition that submatrices corresponding to the system part of codewords are invertible. And new construction method of binary invertible matrices for QC LDPC codes in ST-BICM systems are also proposed and modification for parity-check matrices are also explained.

Performance Improvement of Space-Time OFDM System with Concatenated Codes (연접부호를 적용한 시공간 OFDM 시스템의 성능 개선)

  • 서완우;정연호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.541-546
    • /
    • 2004
  • Space-Time Coding(STC) is a technique that utilizes joint correlation of transmitted signals in both time and space domains. Through this approach, diversity and coding gains can be simultaneously obtained. In this paper, we use SPW simulation tool to implement the IEEE 802.11a system. Based on this system, OFDM system with STC and convolutional coder concatenated is implemented. The system performance is analyzed and compared with the performance of the IEEE 802.11a system. The simulation results show that the performance with concatenated codes at a data rate of 6Mbps shows approximately a 5dB gain over the system with the convolutional code only. At a data rate of 12Mbps, the performance with concatenated codes is further improved by approximately 6dB.