• Title/Summary/Keyword: 시계열 예측분석

Search Result 732, Processing Time 0.032 seconds

Development and Verification of Smart Greenhouse Internal Temperature Prediction Model Using Machine Learning Algorithm (기계학습 알고리즘을 이용한 스마트 온실 내부온도 예측 모델 개발 및 검증)

  • Oh, Kwang Cheol;Kim, Seok Jun;Park, Sun Yong;Lee, Chung Geon;Cho, La Hoon;Jeon, Young Kwang;Kim, Dae Hyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.152-162
    • /
    • 2022
  • This study developed simulation model for predicting the greenhouse interior environment using artificial intelligence machine learning techniques. Various methods have been studied to predict the internal environment of the greenhouse system. But the traditional simulation analysis method has a problem of low precision due to extraneous variables. In order to solve this problem, we developed a model for predicting the temperature inside the greenhouse using machine learning. Machine learning models are developed through data collection, characteristic analysis, and learning, and the accuracy of the model varies greatly depending on parameters and learning methods. Therefore, an optimal model derivation method according to data characteristics is required. As a result of the model development, the model accuracy increased as the parameters of the hidden unit increased. Optimal model was derived from the GRU algorithm and hidden unit 6 (r2 = 0.9848 and RMSE = 0.5857℃). Through this study, it was confirmed that it is possible to develop a predictive model for the temperature inside the greenhouse using data outside the greenhouse. In addition, it was confirmed that application and comparative analysis were necessary for various greenhouse data. It is necessary that research for development environmental control system by improving the developed model to the forecasting stage.

A Study on Demand Forecasting of Export Goods Based on Vector Autoregressive Model : Subject to Each Small Passenger Vehicles Quarterly Exported to USA (VAR모형을 이용한 수출상품 수요예측에 관한 연구: 소형 승용차 모델별 분기별 대미수출을 중심으로)

  • Cho, Jung-Hyeong
    • International Commerce and Information Review
    • /
    • v.16 no.3
    • /
    • pp.73-96
    • /
    • 2014
  • The purpose of this research is to evaluate a short-term export demand forecasting model reflecting individual passenger vehicle brands and market characteristics by using Vector Autoregressive (VAR) models that are based on multivariate time-series model. The short-term export demand forecasting model was created by discerning theoretical potential factors that affect the short-term export demand of individual passenger vehicle brands. Quarterly short-term export demand forecasting model for two Korean small vehicle brands (Accent and Avante) were created by using VAR model. Predictive value at t+1 quarter calculated with the forecasting models for each passenger vehicle brand and the actual amount of sales were compared and evaluated by altering subject period by one quarter. As a result, RMSE % of Accent and Avante was 4.3% and 20.0% respectively. They amount to 3.9 days for Accent and 18.4 days for Avante when calculated per daily sales amount. This shows that the short-term export demand forecasting model of this research is highly usable in terms of prediction and consistency.

  • PDF

Urban Change Detection for High-resolution Satellite Images Using U-Net Based on SPADE (SPADE 기반 U-Net을 이용한 고해상도 위성영상에서의 도시 변화탐지)

  • Song, Changwoo;Wahyu, Wiratama;Jung, Jihun;Hong, Seongjae;Kim, Daehee;Kang, Joohyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1579-1590
    • /
    • 2020
  • In this paper, spatially-adaptive denormalization (SPADE) based U-Net is proposed to detect changes by using high-resolution satellite images. The proposed network is to preserve spatial information using SPADE. Change detection methods using high-resolution satellite images can be used to resolve various urban problems such as city planning and forecasting. For using pixel-based change detection, which is a conventional method such as Iteratively Reweighted-Multivariate Alteration Detection (IR-MAD), unchanged areas will be detected as changing areas because changes in pixels are sensitive to the state of the environment such as seasonal changes between images. Therefore, in this paper, to precisely detect the changes of the objects that consist of the city in time-series satellite images, the semantic spatial objects that consist of the city are defined, extracted through deep learning based image segmentation, and then analyzed the changes between areas to carry out change detection. The semantic objects for analyzing changes were defined as six classes: building, road, farmland, vinyl house, forest area, and waterside area. Each network model learned with KOMPSAT-3A satellite images performs a change detection for the time-series KOMPSAT-3 satellite images. For objective assessments for change detection, we use F1-score, kappa. We found that the proposed method gives a better performance compared to U-Net and UNet++ by achieving an average F1-score of 0.77, kappa of 77.29.

Estimation Model for Freight of Container Ships using Deep Learning Method (딥러닝 기법을 활용한 컨테이너선 운임 예측 모델)

  • Kim, Donggyun;Choi, Jung-Suk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.574-583
    • /
    • 2021
  • Predicting shipping markets is an important issue. Such predictions form the basis for decisions on investment methods, fleet formation methods, freight rates, etc., which greatly affect the profits and survival of a company. To this end, in this study, we propose a shipping freight rate prediction model for container ships using gated recurrent units (GRUs) and long short-term memory structure. The target of our freight rate prediction is the China Container Freight Index (CCFI), and CCFI data from March 2003 to May 2020 were used for training. The CCFI after June 2020 was first predicted according to each model and then compared and analyzed with the actual CCFI. For the experimental model, a total of six models were designed according to the hyperparameter settings. Additionally, the ARIMA model was included in the experiment for performance comparison with the traditional analysis method. The optimal model was selected based on two evaluation methods. The first evaluation method selects the model with the smallest average value of the root mean square error (RMSE) obtained by repeating each model 10 times. The second method selects the model with the lowest RMSE in all experiments. The experimental results revealed not only the improved accuracy of the deep learning model compared to the traditional time series prediction model, ARIMA, but also the contribution in enhancing the risk management ability of freight fluctuations through deep learning models. On the contrary, in the event of sudden changes in freight owing to the effects of external factors such as the Covid-19 pandemic, the accuracy of the forecasting model reduced. The GRU1 model recorded the lowest RMSE (69.55, 49.35) in both evaluation methods, and it was selected as the optimal model.

Application of spatiotemporal transformer model to improve prediction performance of particulate matter concentration (미세먼지 예측 성능 개선을 위한 시공간 트랜스포머 모델의 적용)

  • Kim, Youngkwang;Kim, Bokju;Ahn, SungMahn
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.329-352
    • /
    • 2022
  • It is reported that particulate matter(PM) penetrates the lungs and blood vessels and causes various heart diseases and respiratory diseases such as lung cancer. The subway is a means of transportation used by an average of 10 million people a day, and although it is important to create a clean and comfortable environment, the level of particulate matter pollution is shown to be high. It is because the subways run through an underground tunnel and the particulate matter trapped in the tunnel moves to the underground station due to the train wind. The Ministry of Environment and the Seoul Metropolitan Government are making various efforts to reduce PM concentration by establishing measures to improve air quality at underground stations. The smart air quality management system is a system that manages air quality in advance by collecting air quality data, analyzing and predicting the PM concentration. The prediction model of the PM concentration is an important component of this system. Various studies on time series data prediction are being conducted, but in relation to the PM prediction in subway stations, it is limited to statistical or recurrent neural network-based deep learning model researches. Therefore, in this study, we propose four transformer-based models including spatiotemporal transformers. As a result of performing PM concentration prediction experiments in the waiting rooms of subway stations in Seoul, it was confirmed that the performance of the transformer-based models was superior to that of the existing ARIMA, LSTM, and Seq2Seq models. Among the transformer-based models, the performance of the spatiotemporal transformers was the best. The smart air quality management system operated through data-based prediction becomes more effective and energy efficient as the accuracy of PM prediction improves. The results of this study are expected to contribute to the efficient operation of the smart air quality management system.

Effectiveness Evaluation of Demand Forecasting Based Inventory Management Model for SME Manufacturing Factory (중소기업 제조공장의 수요예측 기반 재고관리 모델의 효용성 평가)

  • Kim, Jeong-A;Jeong, Jongpil;Lee, Tae-hyun;Bae, Sangmin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.197-207
    • /
    • 2018
  • SMEs manufacturing Factory, which are small-scale production systems of various types, mass-produce and sell products in order to meet customer needs. This means that the company has an excessive amount of material supply to reduce the loss due to lack of inventory and high inventory maintenance cost. And the products that fail to respond to the demand are piled up in the management warehouse, which is the reality that the storage cost is incurred. To overcome this problem, this paper uses ARIMA model, a time series analysis technique, to predict demand in terms of seasonal factors. In this way, demand forecasting model based on economic order quantity model was developed to prevent stock shortage risk. Simulation is carried out to evaluate the effectiveness of the development model and to demonstrate the effectiveness of the development model as applied to SMEs in the future.

Outbound Air Travel Demand Forecasting Model with Unobserved Regional Characteristics (미관찰 지역 특성을 고려한 내국인 국제선 항공수요 추정 모형)

  • YU, Jeong Whon;CHOI, Jung Yoon
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.141-154
    • /
    • 2018
  • In order to meet the ever-increasing demand for international air travel, several plans are underway to open new airports and expand existing provincial airports. However, existing air demand forecasts have been based on the total air demand in Korea or the air demand among major cities. There is not much forecast of regional air demand considering local characteristics. In this study, the outbound air travel demand in the southeastern region of Korea was analyzed and the fixed-effects model using panel data was proposed as an optimal model that can reflect the inherent characteristics of metropolitan areas which are difficult to observe in reality. The results of model validation show that panel data analysis effectively addresses the spurious regression and unobserved heterogeneity that are difficult to handle in a model using only a few macroeconomic indicators with time series characteristics. Various statistical validation and conformance tests suggest that the fixed-effects model proposed in this study is superior to other econometric models in predicting demand for international demand in the southeastern region.

Forecasting Model Design of Fire Occurrences with ARIMA Models (ARIMA모델에 기반한 화재발생 빈도 예측모델의 설계)

  • Ahn, Sanghun;Kang, Hoon;Cho, Jaehoon;Kim, Tae-Ok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.20-28
    • /
    • 2015
  • A suitable monitoring method is necessary for successful policy implementation and its evaluation, required for effective prevention of abnormal fire occurrences. To do this, there were studies for applying control charts of quality management to fire occurrence monitoring. As a result, it was proved that more fire occurs in winter and its trend moves yearly-basis with some patterns. Although it has trend, if we apply the same criteria for each time, inefficient overreacting fire prevention policy will be accomplished in winter, and deficient policy will be accomplished in summer. Thus, applying different control limits adaptively for each time would enable better forecasting and monitoring of fire occurrences. In this study, we treat fire occurrences as time series model and propose a method for configuring its coefficients with ARIMA model. Based on this, we expect to carry out advanced analysis of fire occurrences and reasonable implementation of prevention activities.

Prediction of Agricultural Purchases Using Structured and Unstructured Data: Focusing on Paprika (정형 및 비정형 데이터를 이용한 농산물 구매량 예측: 파프리카를 중심으로)

  • Somakhamixay Oui;Kyung-Hee Lee;HyungChul Rah;Eun-Seon Choi;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.169-179
    • /
    • 2021
  • Consumers' food consumption behavior is likely to be affected not only by structured data such as consumer panel data but also by unstructured data such as mass media and social media. In this study, a deep learning-based consumption prediction model is generated and verified for the fusion data set linking structured data and unstructured data related to food consumption. The results of the study showed that model accuracy was improved when combining structured data and unstructured data. In addition, unstructured data were found to improve model predictability. As a result of using the SHAP technique to identify the importance of variables, it was found that variables related to blog and video data were on the top list and had a positive correlation with the amount of paprika purchased. In addition, according to the experimental results, it was confirmed that the machine learning model showed higher accuracy than the deep learning model and could be an efficient alternative to the existing time series analysis modeling.

Development of Urban Flood Warning System Using Regression Analysis (회귀분석에 의한 도시홍수 예보시스템의 개발)

  • Lee, BeumHee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.347-359
    • /
    • 2010
  • A simple web-based flood forecasting system using data from stage and rainfall monitoring stations was developed to solve the difficulty that real-time forecasting model could not get the reliabilities because of assumption of future rainfall duration and intensity. The regression model in this research could forecast future water level of maximum 2 hours after using data from stage and rainfall monitoring stations in Daejeon area. Real time stage and rainfall data were transformed from web-sites of Geum River Flood Control Office & Han River Flood Control Office based MS-Excel 2007. It showed stable forecasts by its maximum standard deviation of 5 cm, means of 1~4 cm and most of improved coefficient of determinations were over 0.95. It showed also more researches about the stationarity of watershed and time-series approach are necessary.