• Title/Summary/Keyword: 시계열 모형(ARIMA 모형)

Search Result 156, Processing Time 0.031 seconds

Transfer Function Model Forecasting of Sea Surface Temperature at Yeosu in Korean Coastal Waters (전이함수모형에 의한 여수연안 표면수온 예측)

  • Seong, Ki-Tack;Choi, Yang-Ho;Koo, Jun-Ho;Lee, Mi-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.526-534
    • /
    • 2014
  • In this study, single-input transfer function model is applied to forecast monthly mean sea surface temperature(SST) in 2010 at Yeosu in Korean coastal waters. As input series, monthly mean air temperature series for ten years(2000-2009) at Yeosu in Korea is used, and Monthly mean SST at Yeosu station in Korean coastal waters is used as output series(the same period of input). To build transfer function model, first, input time series is prewhitened, and then cross-correlation functions between prewhitened input and output series are determined. The cross-correlation functions have just two significant values at time lag at 0 and 1. The lag between input and output series, the order of denominator and the order of numerator of transfer function, (b, r, s) are identified as (0, 1, 0). The selected transfer function model shows that there does not exist the lag between monthly mean air temperature and monthly mean SST, and that transfer function has a first-order autoregressive component for monthly mean SST, and that noise model was identified as $ARIMA(1,0,1)(2,0,0)_{12}$. The forecasted values by the selected transfer function model are generally $0.3-1.3^{\circ}C$ higher than actual SST in 2010 and have 6.4 % mean absolute percentage error(MAPE). The error is 2 % lower than MAPE by ARIMA model. This implies that transfer function model could be more available than ARIMA model in terms of forecasting performance of SST.

A Development of Water Demand Forecasting Model Based on Wavelet Transform and Support Vector Machine (Wavelet Transform 방법과 SVM 모형을 활용한 상수도 수요량 예측기법 개발)

  • Kwon, Hyun-Han;Kim, Min-Ji;Kim, Oon Gi
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1187-1199
    • /
    • 2012
  • A hybrid forecasting scheme based on wavelet decomposition coupled to a support vector machine model is presented for water demand series that exhibit nonlinear behavior. The use of wavelet transform followed by the SVM model of each leading component is explored as a model for water demand data. The proposed forecasting model yields better results than a traditional ARIMA time series forecasting model in terms of self-prediction problem as well as reproducing the properties of the observed water demand data by making use of the advantages of wavelet transform and SVM model. The proposed model can be used to substantially and significantly improve the water demand forecasting and utilized in a real operation.

Forecasting the Air Cargo Demand With Seasonal ARIMA Model: Focusing on ICN to EU Route (계절성 ARIMA 모형을 이용한 항공화물 수요예측: 인천국제공항발 유럽항공노선을 중심으로)

  • Min, Kyung-Chang;Jun, Young-In;Ha, Hun-Koo
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.3
    • /
    • pp.3-18
    • /
    • 2013
  • This study develops a forecasting method to estimate air cargo demand from ICN(Incheon International Airport) to all airports in EU with Seasonal Autoregressive Integrated Moving Average (SARIMA) Model using volumes from the first quarter of 2000 to the fourth quarter of 2009. This paper shows the superiority of SARIMA Model by comparing the forecasting accuracy of SARIMA with that of other ARIMA (Autoregressive Integrated Moving Average) models. Given that very few papers and researches focuses on air route, this paper will be helpful to researchers concerned with air cargo.

Stochastic Multiple Input-Output Model for Extension and Prediction of Monthly Runoff Series (월유출량계열의 확장과 예측을 위한 추계학적 다중 입출력모형)

  • 박상우;전병호
    • Water for future
    • /
    • v.28 no.1
    • /
    • pp.81-90
    • /
    • 1995
  • This study attempts to develop a stochastic system model for extension and prediction of monthly runoff series in river basins where the observed runoff data are insufficient although there are long-term hydrometeorological records. For this purpose, univariate models of a seasonal ARIMA type are derived from the time series analysis of monthly runoff, monthly precipitation and monthly evaporation data with trend and periodicity. Also, a causual model of multiple input-single output relationship that take monthly precipitation and monthly evaporation as input variables-monthly runoff as output variable is built by the cross-correlation analysis of each series. The performance of the univariate model and the multiple input-output model were examined through comparisons between the historical and the generated monthly runoff series. The results reveals that the multiple input-output model leads to the improved accuracy and wide range of applicability when extension and prediction of monthly runoff series is required.

  • PDF

Short-term Construction Investment Forecasting Model in Korea (건설투자(建設投資)의 단기예측모형(短期豫測模型) 비교(比較))

  • Kim, Kwan-young;Lee, Chang-soo
    • KDI Journal of Economic Policy
    • /
    • v.14 no.1
    • /
    • pp.121-145
    • /
    • 1992
  • This paper examines characteristics of time series data related to the construction investment(stationarity and time series components such as secular trend, cyclical fluctuation, seasonal variation, and random change) and surveys predictibility, fitness, and explicability of independent variables of various models to build a short-term construction investment forecasting model suitable for current economic circumstances. Unit root test, autocorrelation coefficient and spectral density function analysis show that related time series data do not have unit roots, fluctuate cyclically, and are largely explicated by lagged variables. Moreover it is very important for the short-term construction investment forecasting to grasp time lag relation between construction investment series and leading indicators such as building construction permits and value of construction orders received. In chapter 3, we explicate 7 forecasting models; Univariate time series model (ARIMA and multiplicative linear trend model), multivariate time series model using leading indicators (1st order autoregressive model, vector autoregressive model and error correction model) and multivariate time series model using National Accounts data (simple reduced form model disconnected from simultaneous macroeconomic model and VAR model). These models are examined by 4 statistical tools that are average absolute error, root mean square error, adjusted coefficient of determination, and Durbin-Watson statistic. This analysis proves two facts. First, multivariate models are more suitable than univariate models in the point that forecasting error of multivariate models tend to decrease in contrast to the case of latter. Second, VAR model is superior than any other multivariate models; average absolute prediction error and root mean square error of VAR model are quitely low and adjusted coefficient of determination is higher. This conclusion is reasonable when we consider current construction investment has sustained overheating growth more than secular trend.

  • PDF

Application of Time-Series Model to Forecast Track Irregularity Progress (궤도틀림 진전 예측을 위한 시계열 모델 적용)

  • Jeong, Min Chul;Kim, Gun Woo;Kim, Jung Hoon;Kang, Yun Suk;Kong, Jung Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.331-338
    • /
    • 2012
  • Irregularity data inspected by EM-120, an railway inspection system in Korea includes unavoidable incomplete and erratic information, so it is encountered lots of problem to analyse those data without appropriate pre-data-refining processes. In this research, for the efficient management and maintenance of railway system, characteristics and problems of the detected track irregularity data have been analyzed and efficient processing techniques were developed to solve the problems. The correlation between track irregularity and seasonal changes was conducted based on ARIMA model analysis. Finally, time series analysis was carried out by various forecasting model, such as regression, exponential smoothing and ARIMA model, to determine the appropriate optimal models for forecasting track irregularity progress.

Forecasting drug expenditure with transfer function model (전이함수모형을 이용한 약품비 지출의 예측)

  • Park, MiHai;Lim, Minseong;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.303-313
    • /
    • 2018
  • This study considers time series models to forecast drug expenditures in national health insurance. We adopt autoregressive error model (ARE) and transfer function model (TFM) with segmented level and trends (before and after 2012) in order to reflect drug price reduction in 2012. The ARE has only a segmented deterministic term to increase the forecasting performance, while the TFM explains a causality mechanism of drug expenditure with closely related exogenous variables. The mechanism is developed by cross-correlations of drug expenditures and exogenous variables. In both models, the level change appears significant and the number of drug users and ratio of elderly patients variables are significant in the TFM. The ARE tends to produce relatively low forecasts that have been influenced by a drug price reduction; however, the TFM does relatively high forecasts that have appropriately reflected the effects of exogenous variables. The ARIMA model without the exogenous variables produce the highest forecasts.

A Forecast Method of Marine Traffic Volume through Time Series Analysis (시계열 분석을 통한 해상교통량 예측 방안)

  • Yoo, Sang-Rok;Park, Young-Soo;Jeong, Jung-Sik;Kim, Chul-Seong;Jeong, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.612-620
    • /
    • 2013
  • In this study, time series analysis was tried, which is widely applied to demand forecast of diverse fields such as finance, economy, trade, and so on, different from previous regression analysis. Future marine traffic volume was forecasted on the basis of data of the number of ships entering Incheon port from January 1996 to June 2013, through courses of stationarity verification, model identification, coefficient estimation, and diagnostic checking. As a result of prediction January 2014 to December 2015, February has less traffic volume than other months, but January has more traffic volume than other months. Also, it was found out that Incheon port was more proper to ARIMA model than exponential smoothing method and there was a difference of monthly traffic volume according to seasons. The study has a meaning in that future traffic volume was forecasted per month with time series model. Also, it is judged that forecast of future marine traffic volume through time series model will be the more suitable model than prediction of marine traffic volume with previous regression analysis.

The Forecast of the Cargo Transportation for the North Port in Busan, using Time Series Models (시계열 모형을 이용한 부산 북항의 물동량 예측)

  • Kim, Jung-Hoon
    • Journal of Korea Port Economic Association
    • /
    • v.24 no.2
    • /
    • pp.1-17
    • /
    • 2008
  • In this paper the cargo transportation were forecasted for the North Port in Busan through time series models. The cargo transportation were classified into three large groups; container, oil, general cargo. The seasonal indexes of existing cargo transportation were firstly calculated, and optimum models were chosen among exponential smoothing models and ARIMA models. The monthly cargo transportation were forecasted with applying the seasonal index in annual cargo transportation expected from the models. Thus, the cargo transportation in 2011 and 2015 were forecasted about 22,900 myriad ton and 24,654 myriad ton respectively. It was estimated that container cargo volume would play the role of locomotive in the increase of the future cargo transportation. On the other hand, the oil and general cargo have little influence upon it.

  • PDF

A Study on Demand Forecasting Change of Korea's Imported Wine Market after COVID-19 Pandemic (코로나 팬데믹 이후 국내 수입와인 시장의 수요예측 변화 연구)

  • Jihyung Kim
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.189-200
    • /
    • 2023
  • At the beginning of the COVID-19 pandemic, Korea's wine market had shrunk as other countries. However, right after the pandemic, Korea's imported wine consumption had been increased 69.6%. Because of the ban on overseas travel, wine was consumed in the domestic market. And consumption of high-end wines were increased significantly due to revenge spending and home drinking. However, from 2022 Korea's wine market has begun to shrink sharply again. Therefore this study forecasts the size of imported wine market by 2032 to provide useful information to wine related business entities. KITA(Korea International Trade Association)'s 95 time-series data per quarter from Q1 of 2001 to Q3 of 2023 was utilized in this research. The accuracy of model was tested based on value of MAPE. And ARIMA model was chosen to forecast the size of market value and Winter's multiplicative model was used for the size of market volume. The result of ARIMA model for the value (MAPE=10.56%) shows that the size of market value in 2032 will be increased up to USD $1,023,619, CAGR=6.22% which is 101% bigger than its size of 2023. On the other hand, the volume of imported wine market (MAPE=10.56%) will be increased up to 64,691,329 tons, CAGR=-0.61% which is only 15.12% bigger than its size of 2023. The result implies that the value of Korea's wine market will continue to grow despite the recent decline. And the high-end wine market will account for most of the increase.