Journal of the Korean Data and Information Science Society
/
제25권3호
/
pp.579-599
/
2014
이 연구는 국내 보건복지 분야에서 시계열 분석을 실시한 논문의 현황을 파악하고, 비뚤림 위험평가를 시행함으로써 향후 보건복지 분야에서의 시계열 분석 방법을 적용하는 데 기초자료를 제공하는 것이 목적이다. 국내 외 전자 데이터베이스를 이용하여, 논문명, 키워드, 초록에 '시계열 분석'을 포함한 6,543건 문헌 중에서 보건복지 분야 91건의 논문을 대상으로 체계적 문헌고찰을 수행하였다. 1987년부터 2013년까지 시계열 분석을 활용한 논문은 점차 증가하고 있는 추세이다. 시계열 분석 연구는 의학과 보건학관련 학회에서의 활용이 높았고, 요인분석과 추세분석을 주요 분석 목적으로 하고 있었다. 세부주제는 국민건강과 의료서비스이용을 주로 다루고 있었고, 분석 기법은 ARIMA 모형, 시계열 회귀모형 순으로 활용되었다. 자료의 대부분은 통계청과 정부기관에서 생산하는 통계자료를 이용하였다. 문헌의 비뚤림 평가 결과, 상당수의 논문들이 표본수가 부족한 자료를 이용하거나, 시계열 도표와 플롯 작성을 간과하였다. 보건복지 영역에서 시계열 분석의 활용이 늘고 있고 향후 이용 가능성도 커지고 있으나, 기존 연구에서는 분석 과정과 결과를 도출하는 과정에서 분석 절차와 기준을 준수하지 않거나 주요 항목을 간과한 논문들이 일부 확인되었다. 향후 시계열 분석의 적극적인 활용뿐만 아니라 통계적 방법과 절차를 준수하고 신뢰성 있는 결과를 도출함으로써 질적 수준을 향상시키는 추가적인 노력이 필요하다.
본 연구는 2015년 6월부터 2018년 8월까지 인천국제공항 여객터미널에서 발생한 품목별 식음료 매출액(POS) 데이터를 기반으로 2020년 12월까지 식음료 매출액을 추정하고자 하였다. 이를 위해 연구자는 시계열 분석기법들 중 하나인 ARIMA-Intervention(개입모형)을 이용하여 인천국제공항 식음료 매출액에 영향을 미칠 것으로 판단되는 주요 시계열 영향변수들을 구분하고 그에 따른 변화폭을 추정하였고 그 결과를 토대로 향후 발생가능할 것으로 예측되는 식음료 월별 매출액을 추정하는 것을 목적으로 한 것이다. 개입변수는 국내 THAAD 배치에 따른 중국 정부의 2016년 7월부터 2017년 12월까지 한국 방문을 자제를 권고한 한한령으로 설정하였다. 정상 예측치의 경우에 비록 식사 매출 상승세가 둔화되었다 하더라도 하계 극성수기인 2019년 7월 203억, 2019년 8월 212억으로 월별 매출액이 200억을 돌파할 것으로 예측되며 2020년에는 각각 214억 및 221억으로 증가할 것으로 예측되었다. 음료 매출액은 2019년 7월에는 77억, 2019년 8월에는 81억으로 예측되며 2020년에는 79억 및 82억으로 증가할 것으로 전망되었다. 저비용항공사들은 정규항공사에 비해 식음료 서비스가 전무하거나 유료화 정책으로 운영하기 때문에 저비용항공사 이용객들은 여객터미널에서 출국 및 입국 시 식음료 서비스를 이용하는 빈도가 높을 수 밖에 없을 것이다. 앞서 예측자료에 제시된 것처럼 식음료 매출은 저비용항공사의 성장과 동반하여 증대될 가능성이 높을 것이다.
1990년대 이후 한국 경제는 두 번의 금융위기(1997년 아시아 금융위기와 2008년 글로벌 금융위기)를 겪었다. 이들 금융위기는 한국 실물경제의 여러 지표에 영향을 끼쳤고 이로 인해 한국의 최대 수출입 관문인 부산항에서 처리되는 물동량 변화에도 영향을 주었다. 그러나 아시아 금융위기 당시 부산항의 총 컨테이너처리실적을 살펴보면 금융위기와 관련된 영향이 명백히 나타나고 있지 않다. 이 연구는 이들 금융위기가 부산항 물동량 변화에 끼친 영향을 분석하기 위해 ARIMA모형의 특수한 형태 중 하나인 개입모형을 이용하였다. 개입모형은 시계열 예측뿐만 아니라 특정 사건발생과 관련된 그 효과를 분석하기 위하여 사용되는 정량적 모형으로 이 연구에서는 개입효과의 추정에 중점을 두었다. 그 결과 부산항 물동량 변화에 두 번의 금융위기가 유의미한 영향을 미쳤다는 것을 보였다.
최근 고급 예측모형 연구에 웹 검색 정보가 활용되고 있다. 세계 웹 검색시장에서 구글이 절대적 우위를 점하고 있지만, 국내 웹 검색시장에서는 네이버가 절대적 우위를 보이고 있다. 이러한 특성을 토대로 본 연구는 예측모형을 활용하여 구글과 네이버의 한국어 검색 정보에 대한 유용성을 비교해 보고자 한다. 이를 위해 ARIMA 모형을 활용하여 세 가지의 한국 청년실업률 예측 시계열 모형을 개발하였다. 모형1은 한국 청년실업률 데이터만 사용하였으며, 모형2와 3은 모형1에 네이버와 구글의 검색어 정보를 각각 추가하였다. 모형 훈련기간에서는 모형1보다 모형2와 3이 더 우수한 예측력을 보였다. 모형2와 3은 서로 다른 검색어 정보와 상관관계를 보였으며, 예측기간 1과 2에서 모형3이 가장 좋은 성능을 보였다. 예측기간 2에서는 모형 3만 유의미한 예측결과를 나타내었다. 이 비교 연구는 네이버와 구글 검색엔진을 이용한 한국어 웹 검색 정보의 유용성을 이해하는 데 도움을 준다.
The purpose of this study is to develop the stochastic stream water quality model for the intake station of Chung-Ju city waterworks in the Han river system. This model was based on the theory of Box-Jenkins Multiplicative ARIMA(SARIMA) and the state space model to simulate changes of water qualities. Variable of water qualities included in the model are temperature and dissolved oxygen(DO). The models development were based on the data obtained from Jan. 1990 to Dec. 1997 and followed the typical procedures of the Box-Jenkins method including identification and estimation. The seasonality of DO and temperature data to formulate for the SARIMA model are conspicuous and the period of revolution was twelve months. Both models had seasonality of twelve months and were formulates as SARIMA {TEX}$(2,1,1)(1,1,1)_{12}${/TEX} for DO and temperature. The models were validated by testing normality and independency of the residuals. The prediction ability of SARIMA model and state space model were tested using the data collected from Jan. 1998 to Oct. 1999. There were good agreements between the model predictions and the field measurements. The performance of the SARIMA model and state space model were examined through comparisons between the historical and generated monthly dissolved oxygen series. The result reveal that the state space model lead to the improved accuracy.
본 논문은 케미컬 탱커시장의 운임예측에 관하여 인공신경망을 적용하였으며 전통적인 시계열 모델인 ARIMA모형과 비교하였다. 케미컬 시장의 경우 상대적으로 소규모이나 범용성이 높은 선박을 이용한 시장으로 수급모델을 활용하여 운임시장을 분석하기 어려우며, 운임의 변동성이 크기 때문에 선형모형을 활용하는데는 한계가 있다. 본 연구는 케미컬 시장의 특성을 고려하여 비선형 모델인 인공신경망을 이용하여 ARIMA와 비교한 결과 RMSE와 Correlation 측면에서 예측성능이 우수함을 보였으며, 케미컬 탱커의 운임예측에 더 적합함을 보였다. 본 연구는 운임거래에 있어 과학적 모델을 제시함으로써 의사결정의 질을 제고하는데 기여할 뿐만 아니라 학문적으로 소외되어온 케미컬 시장 연구에 도움이 될 것으로 기대된다.
본 논문에서는 개입모형(intervention model)을 이용하여 한국의 입출국자 시계열 자료를 분석한다. 개입분석을 위하여 1997년 12월의 IMF 구제금융사건, 2003년의 3월의 SARS 발생, 그리고 2008년의 9월의 리먼브라더스 사태를 개입변수로 고려하였다. 그 결과, 한국의 총 입국자 수에는 SARS 개입변수만이 2003년 4월부터 영향을 미치기 시작하여 2003년 5월부터 급격하게 감소하는 영향을 미친 것으로 나타났다. 반면, 한국의 총 출국자 수에는 모든 3가지 개입의 효과가 유의하게 나타났으며 특히 IMF 개입변수는 1997년 12월부터 영구적인 영향을 미친 것으로 보이며 SARS 및 리먼브라더스 개입변수는 점차로 감소하는 영향을 미친 것으로 나타났다.
This paper used the golf course visitors' data in Jeju region to forecast the growth of inbound air traveler to Jeju. This is because the golf course visitors were proven to bring the highest economic and production inducement effect to the Jeju region. Based on such a data, this paper forecast the short-term growth rate of inbound air traveler using ARIMA to the Jeju until December 2025. According to ARIMA (0,1,0) (0,1,1) model, it was analyzed that the monthly number of golf course visitors to Jeju has been increasing steadily even since COVID-19 pandemic and the number is expected to grow until the end of 2025. Applying the same parameters of ARIMA (0,1,0) (0,1,1) to inbound air travel data, it was found the growth rate of inbound air travelers would be higher than the growth rate of 2019 shortly without moderate variation even though the monthly number of inbound travelers to Jeju had been dropped during COVID-19 pandemic.
The purpose of this paper was to analyze the trend of container volume using the Seasonal Autoregressive Intergrated Moving Average (SARIMA) model. To this end, this paper used monthly time-series data of the East Sea Rim from 2001 to 2019. As a result, the SARIMA(2,1,1)12 model was identified as the most suitable model, and the superiority of the SARIMA model was demonstrated by comparative analysis with the ARIMA model. In addition, to confirmed forecasting accuracy of SARIMA model, this paper compares the volume of predict container to the actual volume. According to the forecast for 24 months from 2020 to 2021, the volume of containaer increased from 60,100,000Ton in 2020 to 64,900,000Ton in 2021
Journal of the Korean Data and Information Science Society
/
제25권1호
/
pp.65-76
/
2014
주택가격은 정부의 부동산 정책이나 국내외의 경기상황과 같은 외부충격요인에 따라 많은 영향을 받는다. 본 연구에서는 주택가격지수 예측을 위한 모형구축에서 중요한 요인은 외부충격요인으로 이를 개입효과라 하며, 이 외부요인들이 주택가격지수에 미치는 영향을 파악하고 향후 주택가격지수를 효율적으로 예측하기 위한 시계열모형을 찾는데 있다. 실제 자료를 이용하여 분석한 예측결과 개입모형이 다른 모형에 비해 우수한 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.