• 제목/요약/키워드: 시계열 모형(ARIMA 모형)

검색결과 156건 처리시간 0.029초

우포늪 수위 자료의 시계열 모형화 및 잔차 분석 (Modelling and Residual Analysis for Water Level Series of Upo Wetland)

  • 김경훈;한대건;김정욱;임종훈;이종소;김형수
    • 한국습지학회지
    • /
    • 제21권1호
    • /
    • pp.66-76
    • /
    • 2019
  • 기후변화로 인해 홍수나 가뭄과 같은 자연재난이 빈번하게 발생하고 있고, 이로 인한 피해 또한 커지고 있다. 습지는 이러한 피해를 저감하고 최소화하는데 중요한 역할을 하고 있는 것으로 알려져 있다. 특히, 자연재난으로 인한 피해 저감 뿐만 아니라 습지의 다양한 기능을 이해하기 위해서는 수위의 변동성을 분석할 필요가 있다. 따라서 본 연구에서는 경상남도 창녕군에 위치한 우포늪의 수위 자료에 적합한 시계열 모형을 도출하고 모형의 적절성을 확인하기 위해 잔차 분석을 수행하였다. 즉, ARIMA 모형을 구축하였고, 잔차 분석을 위해 기존의 비모수 통계기법, BDS 통계기법 및 CRH(Close Returns Histogram)를 통한 결과들을 비교 분석하였다. 특히, 본 연구에서는 시계열 모형의 잔차 분석을 위해 CRH의 적용 가능성을 제시하고자 하였다. 분석 결과, CRH는 정확한 무작위성 검정 결과를 도출하였을 뿐만 아니라 다른 방법들에 비해서 단순한 계산과정을 통해 쉽게 결과를 얻을 수 있었다. 따라서 시계열 모형의 잔차 분석을 위해 BDS 통계기법 뿐만 아니라 CRH를 이용한다면 보다 효과적인 분석을 할 수 있을 것으로 판단된다.

미세먼지 자료에서의 결측치 대체 방법 비교 (Comparision of Missing Imputaion Methods In fine dust data)

  • 김연진;박헌진
    • 한국빅데이터학회지
    • /
    • 제4권2호
    • /
    • pp.105-114
    • /
    • 2019
  • 자료 분석에 있어서 결측치 대체는 큰 이슈중 하나이다. 결측치의 발생을 무시하고 분석을 진행하게 되면, bias가 발생하여 그에 따른 추정치에 대해 잘못된 결과를 줄 수 있다. 이 논문에서는 미세먼지자료에서 발생한 결측치를 적절한 대체 방법을 찾아 적용하자 한다. 이를 통해 시계열 자료에서 발생한 결측치를 R을 기반으로 한MICE, MissForest 등의 기존 방법과 시계열 기반 모델을 사용하여 여러 가지 상황에 대한 시뮬레이션을 설정해 비교해 밝히고자 하였다. 이 결과에 대해 각각을 변수 별로 비교하였을때 ImputeTS 패키지를 이용한 auto arima 모델의 kalman filter를 적용한 모형과 MissForest 모형이 미세먼지자료 결측치 대체에서는 좋은 결과를 주는 것으로 판단되었다.

  • PDF

ARIMA 모형을 이용한 보이스피싱 발생 추이 예측 (Forecasting the Occurrence of Voice Phishing using the ARIMA Model)

  • 추정호;주용휘;엄정호
    • 융합보안논문지
    • /
    • 제22권3호
    • /
    • pp.79-86
    • /
    • 2022
  • 보이스피싱은 가짜 금융기관, 검찰청, 경찰청 등을 사칭하여 개인의 인증번호와 신용카드 정보를 알아내거나 예금을 인출하게 하여 탈취하는 사이버 범죄이다. 최근에는 교묘하고도 은밀한 방법으로 보이스피싱이 이루어지고 있다. '18~'21년 발생한 보이스피싱의 추세를 분석하면, 보이스피싱이 발생되는 시기에 예금 인출이 급격하게 증가하여 시계열 분석에 모호함을 주는 계절성이 존재함을 발견하였다. 이에 본 연구에서는 보이스피싱 발생 추이의 정확한 예측을 위해서 계절성을 X-12 계절성 조정 방법론으로 조정하고, ARIMA 모형을 이용하여 2022년 보이스피싱 발생을 예측하였다.

인공 신경망 모형을 이용한 한국프로야구 관중 수요 예측 (A Prediction of Demand for Korean Baseball League using Artificial Neural Network)

  • 박진욱;박상현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.920-923
    • /
    • 2017
  • 본 연구는 기존의 수요 예측 등의 시계열 분석에서 주로 사용되는 ARIMA 모형의 어려움을 극복하고자 인공신경망(Artificial Neural Network) 모형을 이용하여 한국 프로 야구 관중 수를 예측하였다. 인공신경망의 가장 기본적인 종류인 전방향 신경망(Feedforward Neural Network)의 초모수(Hyperparameter) 선정에 그리드 탐색(Grid Search)을 적용하여 최적의 모형을 찾고자 하였다. 훈련 자료로는 2015년 3월부터 8월까지의 일별 KBO 관중 수 자료를 대상으로 하였고, 예측력 검증을 위해 2015년 9월 관중 수를 예측하여 실제 관측값과 비교하였다. 그 결과, 그리드 탐색법에서 최적 모형이라고 판단한 모형의 예측력은, 평균 절대 백분율 오차(MAPE) 기준으로 평균 27.14% 였다. 또한, 앙상블 기법에서 착안하여 오차율이 낮은 모형 5개의 예측값 평균의 MAPE는 평균 28.58% 였다. 이는 다중회귀와 비교해보았을 때, 평균적으로 각각 14%, 13.6% 높은 예측력을 보이고 있다.

전기 사용량 시계열 함수 데이터에 대한 비모수적 군집화 (Nonparametric clustering of functional time series electricity consumption data)

  • 김재희
    • 응용통계연구
    • /
    • 제32권1호
    • /
    • pp.149-160
    • /
    • 2019
  • 본 연구는 2016년 7월부터 2017년 6월까지 인천 소재 A 대학교의 15분 단위의 일일 전기 사용량 시계열 데이터에 대해 functional data analysis 기법을 적용하여 군집화하고 각 군집의 특성을 파악하고 예측에 활용하고자 한다. 하루동안의 A 대학교의 전기 사용량은 패턴은 주중과 주말 에 큰 차이를 보이며 스플라인 기저함수로 FPCA 구한 후 이들에 대한 가우시안 분포의 혼합모형 기반 군집분석으로 3개의 군집화가 적절해 보인다. 각 군집에 대해 평균 함수, 확률밀도함수, 일들의 분포 등을 정리해 각 군집에 대한 정보와 특징을 보여준다.

인경신경망을 이용한 한국프로야구 관중 수요 예측에 관한 연구 (A Study on Prediction of Attendance in Korean Baseball League Using Artificial Neural Network)

  • 박진욱;박상현
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권12호
    • /
    • pp.565-572
    • /
    • 2017
  • 본 연구는 기존의 수요 예측 등의 시계열 연구에서 주로 사용되는 ARIMA 모형의 어려움을 극복하고자 인공신경망(Artificial neural network) 모형을 이용하여 한국 프로 야구 관중 수를 예측하였다. 훈련 자료로는 2015년 3월부터 9월까지의 일별 KBO 관중 수 자료를 대상으로 하였다. 전방향 신경망(Feedforward neural network)의 모형 훈련 과정에서, 그리드 탐색(Grid search)을 적용하여 최적의 초모수(Hyperparameter)를 찾고자 하였다. 그 결과, 그리드 탐색법의 최적 모형을 이용한 평균 절대 백분율 오차(MAPE)는 평균 20.9% 였다. 앙상블 기법을 이용한 모형의 MAPE는 평균 20.0%였다. 이는 다중회귀와 비교해보았을 때, 평균적으로 각각 26.3%, 30.3% 높은 예측력을 보인다.

스마트그리드 환경하의 가정용 AMI 자료를 위한 시계열 군집분석 연구 (Time series clustering for AMI data in household smart grid)

  • 이진영;김삼용
    • 응용통계연구
    • /
    • 제33권6호
    • /
    • pp.791-804
    • /
    • 2020
  • 스마트그리드 환경하에서 ICT 기술의 발달로 AMI 기기를 통해 가정의 실시간 전력사용량을 수집할 수 있게 됨에 따라 이러한 자료들을 활용하여 보다 더 정확한 가정용 전력사용량 예측을 할 수 있게 되었다. 본 논문에서는 1시간 단위 가정용 전력사용량 자료를 바탕으로 ARIMA, TBATS, NNAR 모형을 사용하여 전력수요를 예측하는 모형을 연구하였는데, 기존과 달리 가구 전체 사용량을 한 번에 예측하는 것이 아닌 유사한 전력사용패턴을 나타내는 가구들을 군집하여 군집별로 예측 모형을 수립하고 각 모형별 예측치를 합산하여 예상 전력사용량을 산출하였다. 특히 전력사용량 자료는 전형적인 시계얼 자료로서 군집분석 방법으로 시계열에 적절한 방법을 선택하였으며 본 논문에서는 동적타임워핑(dynamic time warping)과 Periodogram 기반의 방법을 사용하였다. 연구 결과 사용량이 유사한 가구들을 군집하여 전력사용량을 예측하는 것이 한 번에 예측하는 것보다 예측 성능이 더 우수한 것으로 나타났으며 예측 모형 중에서는 여름철의 경우 NNAR 모형이, 겨울철의 경우 TBATS 모형의 성능이 가장 좋았으며 군집분석 방법은 군집 간 패턴의 차이가 명확히 나타난 동적타임워핑 방법을 사용했을 때 예측 성능의 향상이 가장 많았다.

Application of Informer for time-series NO2 prediction

  • Hye Yeon Sin;Minchul Kang;Joonsung Kang
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권7호
    • /
    • pp.11-18
    • /
    • 2023
  • 본 논문에서는 딥러닝 시계열 예측 모형을 평가한다. 최근 연구에 따르면 이 모형은 ARIMA와 같은 기존 예측 모형보다 성능이 우수하다고 결론짓는다. 그 중 히든 레이어에 이전 정보를 저장하는 순환 신경망이 이를 위한 예측 모형 중 하나이다. 네트워크의 그래디언트 소실 문제를 해결하기 위해 LSTM은 데이터 흐름의 반대 방향으로 숨겨진 레이어가 추가되는 BI-LSTM과 함께 순환 신경망 내부의 작은 메모리로 사용된다. 본 논문은 서울의 2018년 1월 1일부터 2022년도 1월 1일까지의 NO2 자료에 대해 Informer의 성능을 LSTM, BI-LSTM, Transformer와 비교하였다. 이에 실제 값과 예측값 사이의 평균 제곱근 오차와 평균 절대 오차를 구하였다. 그 결과 Test 데이터(2021.09.01.~2022.01.01.)에 대해 Informer는 다른 방법에 비해 가장 높은 예측 정확도 (가장 낮은 예측 오차: 평균 제곱근 오차: 0.0167, 평균 절대 오차: 0.0138)를 보여 타 방법에 비해 그 우수성을 입증하였다. Informer는 당초 취지와 부합되게 다른 방법들이 갖고 있는 장기 시계열 예측에 있어서의 문제점을 개선하는 결과를 나타내고 있다.

Forecasting Total Marine Production through Multiple Time Series Model

  • Cho, Yong-Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권1호
    • /
    • pp.63-76
    • /
    • 2006
  • Marine production forecasting in fisheries is a crucial factor for managing and maintaining fishery resources. Thus this paper aims to generate a forecasting model of total marine production. The most generally method of time series model is to generate the most optimal single forecasting model. But the method could induce a different forecasting results when it does not properly infer a model To overcome the defect, I am trying to propose a single forecasting through multiple time series model. In other word, by comparing and integrating the output resulted from ARIMA and VAR model (which are typical method in a forecasting methodology), I tried to draw a forecasting. It is expected to produce more stable and delicate forecasting prospect than a single model. Through this, I generated 3 models on a yearly and monthly data basis and then here I present a forecasting from 2006 to 2010 through comparing and integrating 3 models. In conclusion, marine production is expected to show a decreasing tendency for the coming years.

  • PDF

실업률 예측을 위한 인터넷 검색 정보의 활용 (Application of Web Query Information for Forecasting Korean Unemployment Rate)

  • 권치명;황성원;정재운
    • 한국시뮬레이션학회논문지
    • /
    • 제24권2호
    • /
    • pp.31-39
    • /
    • 2015
  • 실업은 개인의 경제적 활동뿐 아니라 사회적 문제와 관련되어 있기 때문에 많은 국가들은 실업률을 낮추기 위해 다양한 정책을 추진하고 있다. 기존의 실업 실태 조사 방식에서는 조사시간 지연으로 인해 실업률 자료 확보에 많은 시간이 소요된다. 시의 적절한 실업 정책을 개발하기 위해서는 신속하고 정확한 실업 예측 관련 자료를 확보하는 것이 중요한 문제이다. 이러한 문제를 개선하기 위해 최근에 인터넷 검색 정보를 활용한 분석 기법이 제안되고 있다. 본 연구는 우리나라의 실업률을 예측하는데 인터넷 검색 정보가 어떤 영향을 미치는가를 조사하였다. 선택한 검색어 중에서 '실업급여' 검색어의 트렌드는 실업률과 상당히 높은 상관관계를 보여 주었다. 본 연구는 네이버 트렌드에서 제공하는 인터넷 검색어 정보를 시계열 자료의 분석에 널리 사용되는 ARIMA 모형에 추가하여 검색 정보의 활용이 실업률 예측력에 미치는 영향을 분석하였다. 예측모형의 선택 기준으로 제시되는 예측치의 평균 제곱 오차와 예측 오차 측면에서 실업 관련 인터넷 검색어를 활용한 모형이 그렇지 않은 모형보다 우수한 것으로 나타났다. 이러한 결과는 실업률 예측에 있어서 검색 정보의 활용 가능성을 제시하고 있으며 향후 더 많은 연구가 필요할 것으로 판단된다.