• Title/Summary/Keyword: 시계열 데이터 분석

Search Result 740, Processing Time 0.033 seconds

Fundamental Study on Algorithm Development for Prediction of Smoke Spread Distance Based on Deep Learning (딥러닝 기반의 연기 확산거리 예측을 위한 알고리즘 개발 기초연구)

  • Kim, Byeol;Hwang, Kwang-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • This is a basic study on the development of deep learning-based algorithms to detect smoke before the smoke detector operates in the event of a ship fire, analyze and utilize the detected data, and support fire suppression and evacuation activities by predicting the spread of smoke before it spreads to remote areas. Proposed algorithms were reviewed in accordance with the following procedures. As a first step, smoke images obtained through fire simulation were applied to the YOLO (You Only Look Once) model, which is a deep learning-based object detection algorithm. The mean average precision (mAP) of the trained YOLO model was measured to be 98.71%, and smoke was detected at a processing speed of 9 frames per second (FPS). The second step was to estimate the spread of smoke using the coordinates of the boundary box, from which was utilized to extract the smoke geometry from YOLO. This smoke geometry was then applied to the time series prediction algorithm, long short-term memory (LSTM). As a result, smoke spread data obtained from the coordinates of the boundary box between the estimated fire occurrence and 30 s were entered into the LSTM learning model to predict smoke spread data from 31 s to 90 s in the smoke image of a fast fire obtained from fire simulation. The average square root error between the estimated spread of smoke and its predicted value was 2.74.

Coastal Erosion Time-series Analysis of the Littoral Cell GW36 in Gangwon Using Seahawk Airborne Bathymetric LiDAR Data (씨호크 항공수심라이다 데이터를 활용한 연안침식 시계열 분석 - 강원도 표사계 GW36을 중심으로 -)

  • Lee, Jaebin;Kim, Jiyoung;Kim, Gahyun;Hur, Hyunsoo;Wie, Gwangjae
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1527-1539
    • /
    • 2022
  • As coastal erosion of the east coast is accelerating, the need for scientific and quantitative coastal erosion monitoring technology for a wide area increases. The traditional method for observing changes in the coast was precision monitoring based on field surveys, but it can only be applied to a small area. The airborne bathymetric Light Detection And Ranging (LiDAR) system is a technology that enables economical surveying of coastal and seabed topography in a wide area. In particular, it has the advantage of constructing topographical data for the intertidal zone, which is a major area of interest for coastal erosion monitoring. In this study, time series analysis of coastal seabed topography acquired in Aug, 2021 and Mar. 2022 on the littoral cell GW36 in Gangwon was performed using the Seahawk Airborne Bathymetric LiDAR (ABL) system. We quantitatively monitored the topographical changes by measuring the baseline length, shoreline and Digital Terrain Model (DTM) changes. Through this, the effectiveness of the ABL surveying technique was confirmed in coastal erosion monitoring.

Plant Species Richness in Korea Utilizing Integrated Biological Survey Data (생물기초조사 통합자료를 활용한 우리나라 식물종 풍부도 분석)

  • Seungbum Hong;Jieun Oh;Jaegyu Cha;Kyungeun Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.363-374
    • /
    • 2023
  • The limitation in deriving the species richness representing the entire country of South Korea lies in its relatively short history of species field observations and the scattered observation data, which has been collected by various organizations in different fields. In this study, a comprehensive compilation of the observation data for plants held by agencies under the Ministry of Environment was conducted, enabling the construction of a time series dataset spanning over 100 years. The data integration was carried out using minimal criteria such as species name, observed location, and time (year) followed by data verification and correction processes. Based on the integrated plant species data, the comprehensive collection of plant species in South Korea has occurred predominantly since 2000, and the number of plant species explored through these surveys appears to be converging recently. The collection of species survey data necessary for deriving national-level biodiversity information has recently begun to meet the necessary conditions. Applying the Chao 2 method, the species richness of indigenous plants estimated at 3,182.6 for the 70-year period since 1951. A minimum cumulative period of 7 years is required for this estimation. This plant species richness from this study can be a baseline to study future changes in species richness in South Korea. Moreover, the integrated data with the estimation method for species richness used in this study appears to be applicable to derive regional biodiversity indices such as for local government units as well.

Research on the Development of Distance Metrics for the Clustering of Vessel Trajectories in Korean Coastal Waters (국내 연안 해역 선박 항적 군집화를 위한 항적 간 거리 척도 개발 연구)

  • Seungju Lee;Wonhee Lee;Ji Hong Min;Deuk Jae Cho;Hyunwoo Park
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.367-375
    • /
    • 2023
  • This study developed a new distance metric for vessel trajectories, applicable to marine traffic control services in the Korean coastal waters. The proposed metric is designed through the weighted summation of the traditional Hausdorff distance, which measures the similarity between spatiotemporal data and incorporates the differences in the average Speed Over Ground (SOG) and the variance in Course Over Ground (COG) between two trajectories. To validate the effectiveness of this new metric, a comparative analysis was conducted using the actual Automatic Identification System (AIS) trajectory data, in conjunction with an agglomerative clustering algorithm. Data visualizations were used to confirm that the results of trajectory clustering, with the new metric, reflect geographical distances and the distribution of vessel behavioral characteristics more accurately, than conventional metrics such as the Hausdorff distance and Dynamic Time Warping distance. Quantitatively, based on the Davies-Bouldin index, the clustering results were found to be superior or comparable and demonstrated exceptional efficiency in computational distance calculation.

Spatiotemporal Feature-based LSTM-MLP Model for Predicting Traffic Accident Severity (시공간 특성 기반 LSTM-MLP 모델을 활용한 교통사고 위험도 예측 연구)

  • Hyeon-Jin Jung;Ji-Woong Yang;Ellen J. Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.178-185
    • /
    • 2023
  • Rapid urbanization and advancements in technology have led to a surge in the number of automobiles, resulting in frequent traffic accidents, and consequently, an increase in human casualties and economic losses. Therefore, there is a need for technology that can predict the risk of traffic accidents to prevent them and minimize the damage caused by them. Traffic accidents occur due to various factors including traffic congestion, the traffic environment, and road conditions. These factors give traffic accidents spatiotemporal characteristics. This paper analyzes traffic accident data to understand the main characteristics of traffic accidents and reconstructs the data in a time series format. Additionally, an LSTM-MLP based model that excellently captures spatiotemporal characteristics was developed and utilized for traffic accident prediction. Experiments have proven that the proposed model is more rational and accurate in predicting the risk of traffic accidents compared to existing models. The traffic accident risk prediction model suggested in this paper can be applied to systems capable of real-time monitoring of road conditions and environments, such as navigation systems. It is expected to enhance the safety of road users and minimize the social costs associated with traffic accidents.

A Study on the Movement of Street-based Urban Morphology Using Analysis of Integrated Land Use-Transportation (토지이용-교통 통합적 분석을 통한 도로 기반 도시 형태학적 변화에 관한 연구)

  • Joo, Yong-Jin
    • Spatial Information Research
    • /
    • v.19 no.3
    • /
    • pp.63-72
    • /
    • 2011
  • Urban space structure tends to have a significant change in accordance with maintenance of urban infrastructure such as a traffic route. For this reason, quantitative analysis has been needed to establish spatial distribution and location patterns by considering change of both road accessibility and urban infrastructure level, which can have the most pervasive influence in urban development process. Therefore, this paper aims to analyze spatio-temporal urban morphology through considering distribution patterns of road among transportation infrastructures, population, and spatial structure of metropolitan areas, focusing on Seoul where population growth and the size of urban area have been dramatically increased. For this, we firstly developed and constructed time-series GIS database by using satellite images and topographic maps of the last 70 years to analyze variables which affect urban growth and transportation. In particular, we analyzed the transform of the system of the street by Space Syntax which is able to grasp hierarchical spatial structure through visibility of space and spatial cognition in terms of accessibility. What's more, we analyzed and visualized the relationship urban morphology and road according the regions of Seoul through IPA(Importance Performance Analysis). In terms of the integration land-use and transportation, Space Syntax approach is expected to contribute to efficient urban planning through understanding the influence which various transportation phenomena has an effect on urban development patterns.

Dynamic Computed Tomography based on Spatio-temporal Analysis in Acute Stroke: Preliminary Study (급성 뇌졸중 환자의 시공간 분석 기법을 이용한 동적 전산화 단층 검사: 예비 연구)

  • Park, Ha-Young;Pyeon, Do-Yeong;Kim, Da-Hye;Jung, Young-jin
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.543-547
    • /
    • 2016
  • Acute stroke is a one of common disease that require fast diagnosis and treatment to save patients life. however, the acute stroke may cause lifelong disability due to brain damage with no prompt surgical procedure. In order to diagnose the Stroke, brain perfusion CT examination and possible rapid implementation of 3D angiography has been widely used. However, a low-dose technique should be applied for the examination since a lot of radiation exposure to the patient may cause secondary damage for the patients. Therefore, the degradation of the measured CT images may interferes with a clinical check in that blood vessel shapes on the CT image are significantly affected by gaussian noise. In this study, we employed the spatio-temporal technique to analyze dynamic (brain perfusion) CT data to improve an image quality for successful clinical diagnosis. As a results, proposed technique could remove gaussian noise successfully, demonstrated a possibility of new image segmentation technique for CT angiography. Qualitative evaluation was conducted by skilled radiological technologists, indicated significant quality improvement of dynamic CT images. the proposed technique will be useful tools as a clinical application for brain perfusion CT examination.

A Benchmark of Micro Parallel Computing Technology for Real-time Control in Smart Farm (MPICH vs OpenMP) (제목을스마트 시설환경 실시간 제어를 위한 마이크로 병렬 컴퓨팅 기술 분석)

  • Min, Jae-Ki;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.161-161
    • /
    • 2017
  • 스마트 시설환경의 제어 요소는 난방기, 창 개폐, 수분/양액 밸브 개폐, 환풍기, 제습기 등 직접적으로 시설환경의 조절에 관여하는 인자와 정보 교환을 위한 통신, 사용자 인터페이스 등 간접적으로 제어에 관련된 요소들이 복합적으로 존재한다. PID 제어와 같이 하는 수학적 논리를 바탕으로 한 제어와 전문 관리자의 지식을 기반으로 한 비선형 학습 모델에 의한 제어 등이 공존할 수 있다. 이러한 다양한 요소들을 복합적으로 연동시키기 위해선 기존의 시퀀스 기반 제어 방식에는 한계가 있을 수 있다. 관행의 방식과 같이 시계열 상에서 획득한 충분한 데이터를 이용하여 제어의 양과 시점을 결정하는 방식은 예외 상황에 충분히 대처하기 어려운 단점이 있을 수 있다. 이러한 예외 상황은 자연적인 조건의 변화에 따라 불가피하게 발생하는 경우와 시스템의 오류에 기인하는 경우로 나뉠 수 있다. 본 연구에서는 실시간으로 변하는 시설환경 내의 다양한 환경요소를 실시간으로 분석하고 상응하는 제어를 수행하여 수학적이며 예측 가능한 논리에 의해 준비된 제어시스템을 보완할 방법을 연구하였다. 과거의 고성능 컴퓨팅(HPC; High Performance Computing)은 다수의 컴퓨터를 고속 네트워크로 연동하여 집적적으로 연산능력을 향상시킨 기술로 비용과 규모의 측면에서 많은 투자를 필요로 하는 첨단 고급 기술이었다. 핸드폰과 모바일 장비의 발달로 인해 소형 마이크로프로세서가 발달하여 근래 2 Ghz의 클럭 속도에 이르는 어플리케이션 프로세서(AP: Application Processor)가 등장하기도 하였다. 상대적으로 낮은 성능에도 불구하고 저전력 소모와 플랫폼의 소형화를 장점으로 한 AP를 시설환경의 실시간 제어에 응용하기 위한 방안을 연구하였다. CPU의 클럭, 메모리의 양, 코어의 수량을 다음과 같이 달리한 3가지 시스템을 비교하여 AP를 이용한 마이크로 클러스터링 기술의 성능을 비교하였다.1) 1.5 Ghz, 8 Processors, 32 Cores, 1GByte/Processor, 32Bit Linux(ARMv71). 2) 2.0 Ghz, 4 Processors, 32 Cores, 2GByte/Processor, 32Bit Linux(ARMv71). 3) 1.5 Ghz, 8 Processors, 32 Cores, 2GByte/Processor, 64Bit Linux(Arch64). 병렬 컴퓨팅을 위한 개발 라이브러리로 MPICH(www.mpich.org)와 Open-MP(www.openmp.org)를 이용하였다. 2,500,000,000에 이르는 정수 중 소수를 구하는 연산에 소요된 시간은 1)17초, 2)13초, 3)3초 이었으며, $12800{\times}12800$ 크기의 행렬에 대한 2차원 FFT 연산 소요시간은 각각 1)10초, 2)8초, 3)2초 이었다. 3번 경우는 클럭속도가 3Gh에 이르는 상용 데스크탑의 연산 속도보다 빠르다고 평가할 수 있다. 라이브러리의 따른 결과는 근사적으로 동일하였다. 선행 연구에서 획득한 3차원 계측 데이터를 1초 단위로 3차원 선형 보간법을 수행한 경우 코어의 수를 4개 이하로 한 경우 근소한 차이로 동일한 결과를 보였으나, 코어의 수를 8개 이상으로 한 경우 앞선 결과와 유사한 경향을 보였다. 현장 보급 가능성, 구축비용 및 전력 소모 등을 종합적으로 고려한 AP 활용 마이크로 클러스터링 기술을 지속적으로 연구할 것이다.

  • PDF

Construction and Application of Network Design System for Optimal Water Quality Monitoring in Reservoir (저수지 최적수질측정망 구축시스템 개발 및 적용)

  • Lee, Yo-Sang;Kwon, Se-Hyug;Lee, Sang-Uk;Ban, Yang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.4
    • /
    • pp.295-304
    • /
    • 2011
  • For effective water quality management, it is necessary to secure reliable water quality information. There are many variables that need to be included in a comprehensive practical monitoring network : representative sampling locations, suitable sampling frequencies, water quality variable selection, and budgetary and logistical constraints are examples, especially sampling location is considered to be the most important issues. Until now, monitoring network design for water quality management was set according to the qualitative judgments, which is a problem of representativeness. In this paper, we propose network design system for optimal water quality monitoring using the scientific statistical techniques. Network design system is made based on the SAS program of version 9.2 and configured with simple input system and user friendly outputs considering the convenience of users. It applies to Excel data format for ease to use and all data of sampling location is distinguished to sheet base. In this system, time plots, dendrogram, and scatter plots are shown as follows: Time plots of water quality variables are graphed for identifying variables to classify sampling locations significantly. Similarities of sampling locations are calculated using euclidean distances of principal component variables and dimension coordinate of multidimensional scaling method are calculated and dendrogram by clustering analysis is represented and used for users to choose an appropriate number of clusters. Scatter plots of principle component variables are shown for clustering information with sampling locations and representative location.

The Relationship between Social Media and Consumer Purchase Decision: Findings from Seoul Sharing Bike (소셜미디어와 소비자 구매 결정과의 관계: 서울 공유 자전거에 대한 시계열 분석을 중심으로)

  • Han, Suhyeon;Jang, Junghwa;Choi, Jeonghye;Chang, Sue Ryung
    • Knowledge Management Research
    • /
    • v.22 no.4
    • /
    • pp.135-155
    • /
    • 2021
  • With the emergence of various types of social media and the diversification of their roles, it has become essential for marketers to understand how different types of social media influence consumers' purchase decisions differently and derive more detailed strategies by social media types. This study classifies social media into two types-expression-focused social media and relationship-focused social media-and investigates the relationship between consumer purchases and social media mentions by type. Using the Seoul bike-sharing data and time-series data for social media mentions, we apply the VAR model with Exogenous Variables (VARX). We find that the increase of product mentions in expression-focused social media positively affects both the number of new customers (customer acquisition) and the number of shared bike rentals, while that in relationship-focused social media negatively affects the number of new customers only. In addition, as new customers increase, the product mentions in both types of social media increase. On the other hand, the number of bike rentals has no significant effect in increasing social media mentions regardless of type. This study contributes to the social media and sharing economy literature and provides managerial implications for establishing sophisticated social media marketing in bike-sharing businesses.