• Title/Summary/Keyword: 시계열 데이터 분석

Search Result 740, Processing Time 0.027 seconds

Demand Prediction of Furniture Component Order Using Deep Learning Techniques (딥러닝 기법을 활용한 가구 부자재 주문 수요예측)

  • Kim, Jae-Sung;Yang, Yeo-Jin;Oh, Min-Ji;Lee, Sung-Woong;Kwon, Sun-dong;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.111-120
    • /
    • 2020
  • Despite the recent economic contraction caused by the Corona 19 incident, interest in the residential environment is growing as more people live at home due to the increase in telecommuting, thereby increasing demand for remodeling. In addition, the government's real estate policy is also expected to have a visible impact on the sales of the interior and furniture industries as it shifts from regulatory policy to the expansion of housing supply. Accurate demand forecasting is a problem directly related to inventory management, and a good demand forecast can reduce logistics and inventory costs due to overproduction by eliminating the need to have unnecessary inventory. However, it is a difficult problem to predict accurate demand because external factors such as constantly changing economic trends, market trends, and social issues must be taken into account. In this study, LSTM model and 1D-CNN model were compared and analyzed by artificial intelligence-based time series analysis method to produce reliable results for manufacturers producing furniture components.

Comparison of factors affecting residential and residential environment satisfaction by region using the CART algorithm (CART 알고리즘을 이용한 지역별 주택 및 주거환경 만족도 영향 요인의 비교)

  • Jung su eun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.707-715
    • /
    • 2023
  • This study utilized CART algorithm, a decision tree analysis method, to comparatively analyze factors affecting housing and residential environment satisfaction by region using data from Ministry of Land, Infrastructure and Transport's housing survey in 2020. First, in terms of residential environment satisfaction, accessibility to medical facilities and school district showed higher importance in metropolitan cities and areas compared to other regions, whereas safety from accident showed the opposite trait, showing difference between region. Second, housing characteristics were important in housing satisfaction, indoor environment level satisfaction and indoor safety and hygiene being important in almost all regions, while residential environment characteristics were more important in residential environment satisfaction and influencing factors were relatively evenly distributed. In order to generalize these regional characteristics, research using time series data needs to be conducted later.

Towards Carbon-Neutralization: Deep Learning-Based Server Management Method for Efficient Energy Operation in Data Centers (탄소중립을 향하여: 데이터 센터에서의 효율적인 에너지 운영을 위한 딥러닝 기반 서버 관리 방안)

  • Sang-Gyun Ma;Jaehyun Park;Yeong-Seok Seo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.4
    • /
    • pp.149-158
    • /
    • 2023
  • As data utilization is becoming more important recently, the importance of data centers is also increasing. However, the data center is a problem in terms of environment and economy because it is a massive power-consuming facility that runs 24 hours a day. Recently, studies using deep learning techniques to reduce power used in data centers or servers or predict traffic have been conducted from various perspectives. However, the amount of traffic data processed by the server is anomalous, which makes it difficult to manage the server. In addition, many studies on dynamic server management techniques are still required. Therefore, in this paper, we propose a dynamic server management technique based on Long-Term Short Memory (LSTM), which is robust to time series data prediction. The proposed model allows servers to be managed more reliably and efficiently in the field environment than before, and reduces power used by servers more effectively. For verification of the proposed model, we collect transmission and reception traffic data from six of Wikipedia's data centers, and then analyze and experiment with statistical-based analysis on the relationship of each traffic data. Experimental results show that the proposed model is helpful for reliably and efficiently running servers.

Multidimensional data generation of water distribution systems using adversarially trained autoencoder (적대적 학습 기반 오토인코더(ATAE)를 이용한 다차원 상수도관망 데이터 생성)

  • Kim, Sehyeong;Jun, Sanghoon;Jung, Donghwi
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.7
    • /
    • pp.439-449
    • /
    • 2023
  • Recent advancements in data measuring technology have facilitated the installation of various sensors, such as pressure meters and flow meters, to effectively assess the real-time conditions of water distribution systems (WDSs). However, as cities expand extensively, the factors that impact the reliability of measurements have become increasingly diverse. In particular, demand data, one of the most significant hydraulic variable in WDS, is challenging to be measured directly and is prone to missing values, making the development of accurate data generation models more important. Therefore, this paper proposes an adversarially trained autoencoder (ATAE) model based on generative deep learning techniques to accurately estimate demand data in WDSs. The proposed model utilizes two neural networks: a generative network and a discriminative network. The generative network generates demand data using the information provided from the measured pressure data, while the discriminative network evaluates the generated demand outputs and provides feedback to the generator to learn the distinctive features of the data. To validate its performance, the ATAE model is applied to a real distribution system in Austin, Texas, USA. The study analyzes the impact of data uncertainty by calculating the accuracy of ATAE's prediction results for varying levels of uncertainty in the demand and the pressure time series data. Additionally, the model's performance is evaluated by comparing the results for different data collection periods (low, average, and high demand hours) to assess its ability to generate demand data based on water consumption levels.

A Longitudinal Time Series Study on the Viewing Behavior of Digital Media VOD Service Focused on Terrestrial VOD of IPTV for 5 years (디지털미디어 VOD 서비스 시청행태의 종단 시계열추세 연구 - 5년간 지상파VOD의 실적을 중심으로)

  • Lee, Sang-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.9
    • /
    • pp.277-283
    • /
    • 2017
  • This paper deals with a longitudinal time series study on the viewing behavior of digital media service. After holdback of terrestrial broadcasting VOD service was extended in 2013, viewers' terrestrial broadcasting VOD viewing went down sharply. Researcher assumed that there was driven by watching alternative products such as movies, kids, etc. as the cause of the decline of the terrestrial broadcasting VOD viewing. In addition, researcher assumed that the decline of terrestrial broadcasting VOD viewing had an influence on the viewing rate of the terrestrial real-time broadcasting, and confirmed the cause of the decreasing of the terrestrial real-time broadcasting viewing rate. In order for terrestrial broadcasters to retrieve real-time broadcasting and VOD viewing, it is necessary to shorten the VOD holdback and reacquire viewers away from terrestrial broadcasting.

Effects of Spatio-temporal Features of Dynamic Hand Gestures on Learning Accuracy in 3D-CNN (3D-CNN에서 동적 손 제스처의 시공간적 특징이 학습 정확성에 미치는 영향)

  • Yeongjee Chung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.145-151
    • /
    • 2023
  • 3D-CNN is one of the deep learning techniques for learning time series data. Such three-dimensional learning can generate many parameters, so that high-performance machine learning is required or can have a large impact on the learning rate. When learning dynamic hand-gestures in spatiotemporal domain, it is necessary for the improvement of the efficiency of dynamic hand-gesture learning with 3D-CNN to find the optimal conditions of input video data by analyzing the learning accuracy according to the spatiotemporal change of input video data without structural change of the 3D-CNN model. First, the time ratio between dynamic hand-gesture actions is adjusted by setting the learning interval of image frames in the dynamic hand-gesture video data. Second, through 2D cross-correlation analysis between classes, similarity between image frames of input video data is measured and normalized to obtain an average value between frames and analyze learning accuracy. Based on this analysis, this work proposed two methods to effectively select input video data for 3D-CNN deep learning of dynamic hand-gestures. Experimental results showed that the learning interval of image data frames and the similarity of image frames between classes can affect the accuracy of the learning model.

SpatioTemporal GIS를 활용한 도시공간모형 적용에 관한 연구 / 인구분포모델링을 중심으로

  • 남광우;이성호;김영섭;최철옹
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2002.03b
    • /
    • pp.127-141
    • /
    • 2002
  • GIS환경에서 도시모형(urban model)의 적용을 목적으로 사회·경제적 데이터(socio-economic data)를 활용하는 과정은 도시현상이 갖는 복잡성과 변동성으로 인해 하나의 특정시간에서의 상황을 그대로 저장한 형태인 스냅샷 모형(snapshot model)만으로는 효율적인 공간분석의 실행이 불가능하다. 또한 도시모형을 적용하는 과정에서 GIS의 대상이 되는 공간, 속성, 시간의 정의는 분석목적에 따라 다르게 정의되어질 수 있으며 이에 따라 상이한 결과가 도출될 수 있다. 본 연구는 30년 간의 부산시 인구분포의 동적 변화과정 관측을 위해 시간개념을 결합한 Temporal GIS를 구축하고 이를 활용하여 인구밀도모형 및 접근성모형을 적용하는 과정을 통해 보다 효율적이고 다양한 결과를 제시할 수 있는 GIS 활용방안을 제시하고자 하였다. 흔히 공간현상의 계량화와 통계적 기법의 적용을 위한 데이터 처리과정은 많은 오차와 오류를 유발할 수 있다. 이러한 문제의 해결을 위해서는 우선적으로 분석목적에 맞는 데이터의 정의(Data Definition), 적용하고자 하는 모형(Model)의 유용성 검증, 적절한 분석단위의 설정, 결과해석의 객관적 접근 등이 요구된다. 이와 더불어 변동성 파악을 위한 시계열 자료의 효율적 처리를 위한 방법론이 마련되어져야 한다. 즉, GIS환경에서의 도시모형의 적용에 따른 효율성과 효과성의 극대화를 위해서는 분석목적에 맞는 데이터모델의 설정과 공간DB의 구축방법이 이루어져야 하며 분석가능한 데이터의 유형에 대한 충분한 고려와 적용과정에서 분석결과에 중대한 영향을 미칠 수 있는 요소들을 미리 검증하여 결정하는 순환적 의사결정과정이 필요하다., 표준패턴을 음표와 비음표의 두개의 그룹으로 나누어 인식함으로써 DP 매칭의 처리 속도를 개선시켰고, 국소적인 변형이 있는 패턴과 특징의 수가 다른 패턴의 경우에도 좋은 인식률을 얻었다.r interferon alfa concentrated solution can be established according to the monograph of EP suggesting the revision of Minimum requirements for biological productss of e-procurement, e-placement, e-payment are also investigated.. monocytogenes, E. coli 및 S. enteritidis에 대한 키토산의 최소저해농도는 각각 0.1461 mg/mL, 0.2419 mg/mL, 0.0980 mg/mL 및 0.0490 mg/mL로 측정되었다. 또한 2%(v/v) 초산 자체의 최소저해농도를 측정한 결과, B. cereus, L. mosocytogenes, E. eoli에 대해서는 control과 비교시 유의적인 항균효과는 나타나지 않았다. 반면에 S. enteritidis의 경우는 배양시간 4시간까지는 항균활성을 나타내었지만, 8시간 이후부터는 S. enteritidis의 성장이 control 보다 높아져 배양시간 20시간에서는 control 보다 약 2배 이상 균주의 성장을 촉진시켰다.차에 따른 개별화 학습을 가능하게 할 뿐만 아니라 능동적인 참여를 유도하여 학습효율을 높일 수 있을 것으로 기대된다.향은 패션마케팅의 정의와 적용범위를 축소시킬 수 있는 위험을 내재한 것으로 보여진다. 그런가 하면, 많이 다루어진 주제라

  • PDF

Analysis and Prediction Methods of Marine Accident Patterns related to Vessel Traffic using Long Short-Term Memory Networks (장단기 기억 신경망을 활용한 선박교통 해양사고 패턴 분석 및 예측)

  • Jang, Da-Un;Kim, Joo-Sung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.780-790
    • /
    • 2022
  • Quantitative risk levels must be presented by analyzing the causes and consequences of accidents and predicting the occurrence patterns of the accidents. For the analysis of marine accidents related to vessel traffic, research on the traffic such as collision risk analysis and navigational path finding has been mainly conducted. The analysis of the occurrence pattern of marine accidents has been presented according to the traditional statistical analysis. This study intends to present a marine accident prediction model using the statistics on marine accidents related to vessel traffic. Statistical data from 1998 to 2021, which can be accumulated by month and hourly data among the Korean domestic marine accidents, were converted into structured time series data. The predictive model was built using a long short-term memory network, which is a representative artificial intelligence model. As a result of verifying the performance of the proposed model through the validation data, the RMSEs were noted to be 52.5471 and 126.5893 in the initial neural network model, and as a result of the updated model with observed datasets, the RMSEs were improved to 31.3680 and 36.3967, respectively. Based on the proposed model, the occurrence pattern of marine accidents could be predicted by learning the features of various marine accidents. In further research, a quantitative presentation of the risk of marine accidents and the development of region-based hazard maps are required.

A study on the forecasting models using housing price index (주택가격지수 예측모형에 관한 비교연구)

  • Lim, Seong Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.65-76
    • /
    • 2014
  • Housing prices are influenced by external shock factors such as real estate policy or economy. Thus, the intervention effect is important for the development of forecasting model for housing price index. In this paper, we examined the degree of effective power of external shock factors for forecasting housing price index and analyzed time series models for efficient forecasting of housing price index. It is shown that intervention models are better than other models in forecasting results using real data based on the accuracy criteria.

Time Series Analysis of Patent Keywords for Forecasting Emerging Technology (특허 키워드 시계열분석을 통한 부상기술 예측)

  • Kim, Jong-Chan;Lee, Joon-Hyuck;Kim, Gab-Jo;Park, Sang-Sung;Jang, Dong-Sick
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.650-652
    • /
    • 2014
  • 국가와 기업의 연구개발투자 및 경영정책 전략 수립에서 미래 부상기술 예측은 매우 중요한 역할을 한다. 기술예측을 위한 다양한 방법들이 사용되고 있으며 특허를 이용한 기술예측 또한 활발히 진행되고 있다. 최근에는 텍스트마이닝을 이용해 특허데이터의 정량적인 분석이 이루어지고 있다. 본 논문에서는 텍스트마이닝과 지수평활법을 이용한 기술예측 방법을 제안한다.