• 제목/요약/키워드: 시계열 군집화

검색결과 43건 처리시간 0.023초

범주형 시계열 자료의 군집화: 프로야구 자료의 사례 연구 (Categorical time series clustering: Case study of Korean pro-baseball data)

  • 박노진
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권3호
    • /
    • pp.621-627
    • /
    • 2016
  • 범주형 시계열 자료의 군집화에 대하여 정리해 보았다. 시계열 자료의 군집화는 일반적인 군집화에 시간을 고려해야하는 측면이 있다. 한편, 범주형 시계열 자료의 군집화에 대한 연구가 진행되었으나 현재 정리 요약된 국내외 논문을 찾기 어렵다. 본 논문에서는 범주형 시계열을 군집화 하는 몇 가지 방법들을 제시하고 그 방법들을 비교하기 위해 프로야구 데이터를 이용하였다. 프로야구 팀들 간에 어떤 팀이 특정 팀에 유독 약한 경기력을 보이는 경우가 있다. 국내 최강이라는 S팀이 유독 H팀에게 그런 경우가 그렇다. 2015년 S팀의 상대전적의 군집화를 통해 S팀과 H팀의 관계가 유별난 지를 밝히려 한다. 통계적으로 말하자면, 승/패로 이루어진 시계열 자료의 군집화를 수행하려는 것이다. 분석결과 S팀과 H팀과의 관계가 다른 팀들과의 관계에 비해 눈에 띠는 차이가 있음을 알 수 있었다.

시계열 데이터에 대한 클러스터링 성능 분석: Wavelet과 Autoencoder 비교 (Clustering Performance Analysis for Time Series Data: Wavelet vs. Autoencoder)

  • 황우성;임효상
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.585-588
    • /
    • 2018
  • 시계열 데이터의 특징을 추출하여 분석하는 과정에서 시게열 데이터가 가지는 고차원성은 차원의 저주(Course of Dimensionality)로 인해 데이터내의 유효한 정보를 찾는데 어려움을 만든다. 이러한 문제를 해결하기 위해 차원 축소 기법(dimensionality reduction)이 널리 사용되고 있지만, 축소 과정에서 발생하는 정보의 희석으로 인하여 시계열 데이터에 대한 군집화(clustering)등을 수행하는데 있어서 성능의 변화를 가져온다. 본 논문은 이러한 현상을 관찰하기 위해 이산 웨이블릿 변환(Discrete Wavelet Transform:DWT)과 오토 인코더(AutoEncoder)를 차원 축소 기법으로 활용하여 시계열 데이터의 차원을 압축 한 뒤, 압축된 데이터를 K-평균(K-means) 알고리즘에 적용하여 군집화의 효율성을 비교하였다. 성능 비교 결과, DWT는 압축된 차원수 그리고 오토인코더는 시계열 데이터에 대한 충분한 학습이 각각 보장된다면 좋은 군집화 성능을 보이는 것을 확인하였다.

불균형 Haar 웨이블릿 변환을 이용한 군집화를 위한 시계열 표현 (Time series representation for clustering using unbalanced Haar wavelet transformation)

  • 이세훈;백창룡
    • 응용통계연구
    • /
    • 제31권6호
    • /
    • pp.707-719
    • /
    • 2018
  • 시계열 데이터의 분류와 군집화를 효율적으로 수행하기 위해 다양한 시계열 표현 방법들이 제안되었다. 본 연구는 Lin 등 (2007)이 제안한 국소 평균 근사를 이용하여 시계열의 차원을 축소한 후 심볼릭 자료로 이산화하는 symbolic aggregate approximation (SAX) 방법의 개선에 대해서 연구하였다. SAX는 국소 평균 근사를 할 때 등간격으로 임의의 개수의 세그먼트로 나누어 평균을 계산하여 세그먼트의 개수에 그 성능이 크게 좌우된다. 따라서 본 논문은 불균형 Haar 웨이블릿 변환을 통해 국소 평균 수준을 등간격이 아니라 자료의 특성을 반영하여 자료 의존적으로 선택하게 함으로써 시계열의 차원을 효과적으로 축소함과 동시에 정보의 손실을 줄이는 방법에 대해서 제안한다. 제안한 방법은 실증 자료 분석을 통해 SAX 방법을 개선시킴을 확인하였다.

지역 군집화를 위한 CNN-GRU 기반 다변량 시계열 데이터의 특성 추출 (Feature Extraction of CNN-GRU based Multivariate Time Series Data for Regional Clustering)

  • 김진아;이지훈;최동욱;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.950-951
    • /
    • 2019
  • 시계열 데이터에 대한 군집화 관련 연구는 주로 통계 분석을 통해 이뤄지기 때문에 데이터가 갖는 특성을 완전히 반영하는 데 한계를 갖는다. 본 논문에서는 다변량 데이터에서의 군집화를 위하여 변수별로 시간에 따른 변화와 특징을 추출하기 위한 CNN-GRU(Convolutional Neural Network - Gated Recurrent Unit) 기반의 신경망 모델을 제안한다. CNN을 활용하여 변수별로 갖는 특성을 파악하고자 하였으며, GRU을 통해 전체 시간에 따른 소비 추세를 도출하고자 하였다. 지역별로 업종에 따라 사용된 2년 치의 실제 카드 데이터를 활용하였으며, 유사한 소비 추세를 보이는 지역을 군집화하는데 이를 적용하였다. 결과적으로, 다변량 시계열 데이터를 통해 전체적인 흐름을 반영하여 패턴화했다는 점에서 의의를 갖는다.

이상탐지 기반의 효율적인 시계열 유사도 측정 및 순위화 (Efficient Time-Series Similarity Measurement and Ranking Based on Anomaly Detection)

  • 최지현;안현
    • 인터넷정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.39-47
    • /
    • 2024
  • 시계열 분석은 시간 순서로 정렬된 데이터로부터 다양한 정보와 인사이트를 발견하기 위한 방법으로 많은 조직에서 비즈니스 문제 해결을 위해 적용하고 있다. 그중에서 시계열 유사도 측정은 패턴이 비슷한 시계열들을 식별하기 위한 단계로서 시계열 검색 및 군집화와 같은 시계열 분석 응용에서 매우 중요하다. 본 연구에서는 전체 시계열이 아닌 이상치들을 중심으로 시계열 유사도 측정을 계산 효율적으로 수행하는 방법을 제안한다. 이와 관련하여 이상탐지를 통해 추출된 서브시퀀스 집합에 대한 유사도 측정 결과와 시계열 전체에 대한 유사도 측정 결과 사이의 순위 상관관계를 측정 및 분석하여 제안 방법을 검증한다. 실험 결과로써, 주식 종목 시계열 데이터에 이상치 비율 10% 을 적용한 유사도 측정으로부터 최대 0.9 이상의 스피어만 순위 상관계수를 확인하였다. 결론적으로 제안 방법을 통해 시계열 유사도 측정에 소요되는 계산량을 유의미하게 절감하는 동시에 신뢰 가능한 시계열 검색 및 군집화 결과를 기대할 수 있다.

평활된 주기도를 이용한 강수량자료의 군집화 (Classification of Precipitation Data Based on Smoothed Periodogram)

  • 박만식;김희영
    • 응용통계연구
    • /
    • 제21권3호
    • /
    • pp.547-560
    • /
    • 2008
  • 스펙트럼 밀도함수(spectral density function)는 시계열 자료가 정상성(stationarity)을 만족하는 경우에 주파수 영역(frrqllrnFr domain)에서 시계열 자료의 자기공분산함수(auto-covariance function)을 결정짓는 함수이고, 평활된 주기도(smoothed periodogram)는 스펙트럼 밀도함수의 일치 추정량(consistent estimator)이 됨이 잘 알려져 있다. 본 연구에서는 시계열 자료를 평활된 주기도를 이용하여 군집화하는 방법을 소개한다. 최근 김희영과 박만식 (2007)의 연구에 의하면 이 거리는 정상시계열들을 효율적으로 분류하고 있음을 알 수 있다. 본 연구는 시계열 자료를 분류하는데 사용된 기존의 거리들을 간략히 소개하고, 우리나라 22개 지역에서 1987년 1월부터 2007년 12월까지 측정한 월별 강수량 자료를 대상으로 평활된 주기도 거리를 이용하여 지역을 군집화한다.

시계열자료의 효율적 군집분석을 위한 구간특징화와 계층적 베이지안 기법의 융합 (A Fusion of the Period Characterized and Hierarchical Bayesian Techniques for Efficient Cluster Analysis of Time Series Data)

  • 정영애;전진호
    • 디지털융복합연구
    • /
    • 제13권7호
    • /
    • pp.169-175
    • /
    • 2015
  • 주가지표처럼 동적이며 시간흐름을 따르는 시계열자료들을 이해하는 효과적인 방법은 주어진 시계열자료들에 대하여 모델을 결정함으로서 이해하는 것이 좋다. 주어진 자료들에 대한 모델 결정과정은 수집되어진 대용량 시계열자료 전체를 한 번에 다 살펴보는 것보다 자료를 특정의 중요한 몇 개의 하위그룹으로 군집화하여 각 군집별 모델결정을 통해 자료 전체를 이해하는 것이 효율적이다. 본 연구에서는 주어진 시계열자료들에 대하여 하위그룹으로의 효율적 군집화 과정 그리고 각 군집별 모델결정의 두 과정 중 첫 번째 과정인 하위집단으로 군집화 과정에 자료의 구간특징화 기법과 휴리스틱 베이지안기법의 융합을 이용하여 시간 및 계산비용을 감소시킬 수 있는 기법을 제안하였으며 실제적인 주가지표를 이용한 실험을 통해 제안하는 기법의 유효성을 확인하였다.

전기 사용량 시계열 함수 데이터에 대한 비모수적 군집화 (Nonparametric clustering of functional time series electricity consumption data)

  • 김재희
    • 응용통계연구
    • /
    • 제32권1호
    • /
    • pp.149-160
    • /
    • 2019
  • 본 연구는 2016년 7월부터 2017년 6월까지 인천 소재 A 대학교의 15분 단위의 일일 전기 사용량 시계열 데이터에 대해 functional data analysis 기법을 적용하여 군집화하고 각 군집의 특성을 파악하고 예측에 활용하고자 한다. 하루동안의 A 대학교의 전기 사용량은 패턴은 주중과 주말 에 큰 차이를 보이며 스플라인 기저함수로 FPCA 구한 후 이들에 대한 가우시안 분포의 혼합모형 기반 군집분석으로 3개의 군집화가 적절해 보인다. 각 군집에 대해 평균 함수, 확률밀도함수, 일들의 분포 등을 정리해 각 군집에 대한 정보와 특징을 보여준다.

키넥트 센서를 이용한 팔 제스처 인식 시스템의 설계 (Design of an Arm Gesture Recognition System using Kinect Sensor)

  • 허세경;신예슬;김혜숙;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.250-253
    • /
    • 2013
  • 최근 카메라 영상을 이용한 제스처 인식 관련 연구가 활발히 진행되고 있다. 카메라 영상을 이용한 제스처 인식에서 많이 사용되는 학습 알고리즘에는 확률 그래프 모델인 HMM과 CRF 등이 있다. 이 학습 알고리즘들은 다차원의 연속된 실수 데이터를 가지고 모델을 학습하면 계산량이 많아진다. 본 논문에서는 팔 관절 위치 데이터를 k-평균 군집화 과정을 거쳐 1차원의 시계열 데이터로 변환 후, 제스처별로 HMM 모델을 학습하는 방법을 제안한다. 키넥트 센서를 통해 얻은 팔 관절 위치 데이터에 k-평균 군집화를 적용하여 1차원 시계열 데이터를 생성하고, 이를 HMM의 학습 및 인식에 사용한다. 본 논문에서 제안하는 방법의 성능을 분석하기 위하여, 다른 시계열 학습 알고리즘인 AP+DTW를 이용한 방법과의 비교 실험을 포함해 다양한 실험들을 수행하였다.

스마트 그리드에서의 시계열 군집분석을 통한 전력수요 예측 연구 (A study on electricity demand forecasting based on time series clustering in smart grid)

  • 손흥구;정상욱;김삼용
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.193-203
    • /
    • 2016
  • 본 논문은 ICT기반 시장에서의 수요관리시스템에서의 핵심 요소인 전력 수요 예측을 위하여, 전체 사용량을 기반으로 예측 하는 방식이 아닌, 시계열 기반 군집분석을 통한 군집별 예측량의 결합을 실시하였다. 시계열 군집 분석 방법으로서 Periodogram 기반의 정규화 군집분석, 예측 기반의 군집분석, DTW(Dynamic Time Warping)를 이용하여 군집화를 시도하였으며, 군집 별 수요예측 모형으로서 DSHW(Double Seasonal Holt-Winters) 모형, TBATS(Trigonometric, Box-Cox transform, ARMA errors, Trend and Seasonal components) 모형, FARIMA(Fractional ARIMA) 모형을 사용하여 예측을 실시하였다. 전체 사용량을 기반으로 예측 하는 방식이 아닌, 군집분석을 통한 군집별 예측량의 결합이 더 낮은 MAPE로 나타남에 따라 우수한 예측 방법으로 판단되었다.