• Title/Summary/Keyword: 시계열

Search Result 3,296, Processing Time 0.024 seconds

Enhancing Classification Performance of Temporal Keyword Data by Using Moving Average-based Dynamic Time Warping Method (이동 평균 기반 동적 시간 와핑 기법을 이용한 시계열 키워드 데이터의 분류 성능 개선 방안)

  • Jeong, Do-Heon
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.4
    • /
    • pp.83-105
    • /
    • 2019
  • This study aims to suggest an effective method for the automatic classification of keywords with similar patterns by calculating pattern similarity of temporal data. For this, large scale news on the Web were collected and time series data composed of 120 time segments were built. To make training data set for the performance test of the proposed model, 440 representative keywords were manually classified according to 8 types of trend. This study introduces a Dynamic Time Warping(DTW) method which have been commonly used in the field of time series analytics, and proposes an application model, MA-DTW based on a Moving Average(MA) method which gives a good explanation on a tendency of trend curve. As a result of the automatic classification by a k-Nearest Neighbor(kNN) algorithm, Euclidean Distance(ED) and DTW showed 48.2% and 66.6% of maximum micro-averaged F1 score respectively, whereas the proposed model represented 74.3% of the best micro-averaged F1 score. In all respect of the comprehensive experiments, the suggested model outperformed the methods of ED and DTW.

A Study on Online Detection Schemes of Earthquake Induced Shifts in Coordinate Time Series of GNSS Continuous Operation Reference Station by Kalman Filtering (칼만필터에 기반한 GNSS 상시관측소 좌표 시계열의 지진에 따른 편의검출 기법에 관한 연구)

  • Lee, Hungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.662-671
    • /
    • 2020
  • It is crucial to manage and maintain the geodetic reference coordinates of GNSS continuously operating reference stations (CORSs) in consideration of their fundamental roles in geodetic control and positioning navigation infrastructure. Earthquake-induced crustal displacement directly impacts the reference coordinates, so such events should be promptly detected, and appropriate action should be made to maintain the target accuracy, including update of the geodetic coordinates. To this end, this paper deals with online schemes for the detection of persistent shifts in the coordinate time-series produced by an automatic GNSS processing system. Algorithms were implemented to test filtered results, such as hypothesis tests of the innovation sequence of a Kalman filter and a cumulative sum (CUSUM) test. The results were assessed by the time-series of coordinates of 14 CORS for two years, including the 2011 Tohoku earthquake. The results show that the global hypothesis test is practical for detecting abrupt jumps, whereas CUSUM is effective for identifying persistent shifts.

Outlier detection in time series data (시계열 자료에서의 특이치 발견)

  • Choi, Jeong In;Um, In Ok;Choa, Hyung Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.907-920
    • /
    • 2016
  • This study suggests an outlier detection algorithm that uses quantile autoregressive model in time series data, eventually applying it to actual stock manipulation cases by comparing its performance to existing methods. Studies on outlier detection have traditionally been conducted mostly in general data and those in time series data are insufficient. They have also been limited to a parametric model, which is not convenient as it is complicated with an analysis that takes a long time. Thus, we suggest a new algorithm of outlier detection in time series data and through various simulations, compare it to existing algorithms. Especially, the outlier detection algorithm in time series data can be useful in finding stock manipulation. If stock price which had a certain pattern goes out of flow and generates an outlier, it can be due to intentional intervention and manipulation. We examined how fast the model can detect stock manipulations by applying it to actual stock manipulation cases.

Comparison of Mortality Estimate and Prediction by the Period of Time Series Data Used (시계열 적용기간에 따른 사망력 추정 및 예측결과 비교 - LC모형과 LC 코호트효과 확장모형을 중심으로 -)

  • Jung, Kyunam;Baek, Jeeseon;Kim, Donguk
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.1019-1032
    • /
    • 2013
  • The accurate prediction of future mortality is an important issue due to recent rapid increases in life expectancy. An accurate estimation and prediction of mortality is important to future welfare policies. The optimal selection of a mortality model is important to estimate and predict mortality; however, the period of time series data used is also an important issue. It is essential to understand that the time series data for mortality is short in Korea and the data before 1982 is incomplete. This paper divides the time series of Korean mortality into two sets to compare the parameter estimates of the LC model and LC model with a cohort effect by the period of data used. A modeling and prediction of the mortality index and cohort effect index as well as the evaluation of future life expectancy is conducted. Finally, some suggestions are proposed for the future prediction of mortality.

Investigation of Correlation Between Cognition/Emotion Styles and Judgmental Time-Series Forecasting Using a Self-Organizing Neural Network (자기 조직 신경망에 의한 인지/감성 유형의 시계열 직관 예측과의 상관성 조사)

  • Yoo Hyeon-Joong;Park Hung Kook;Cho Taekyung;Park Jongil
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.3 s.303
    • /
    • pp.29-38
    • /
    • 2005
  • Although people frequently rely on intuition in managing activities, they rarely use it in developing effective decision-making support systems. In this paper, we investigate and compare the correlations between such characteristics as cognition and emotion characteristics and judgmental time-series forecasting accuracy by using a self-organizing neural network, and eventually aim to help build efficient decision-making atmosphere. The neural network used in this paper employs a self-supervised adaptive algorithm, and the feature of which is that it inherently can use correlation between input vectors by exchanging information between neuron clusters in the self-organizing layer during the training. Our experiments showed that both cognition and emotion characteristics had correlations with judgmental time-series forecasting, and that cognition characteristics had larger correlation than emotion characteristics. We also found that conceptual style had larger correlation than behavioral and analytical styles, and displeasure-sleepiness style had larger correlation than pleasure-arousal style with the forecasting.

On Extending the Prefix-Querying Method for Efficient Time-Series Subsequence Matching Under Time Warping (타임 워핑 하의 효율적인 시계열 서브시퀀스 매칭을 위한 접두어 질의 기법의 확장)

  • Chang Byoung-Chol;Kim Sang-Wook;Cha Jae-Hyuk
    • The KIPS Transactions:PartD
    • /
    • v.13D no.3 s.106
    • /
    • pp.357-368
    • /
    • 2006
  • This paper discusses the way of processing time-series subsequence matching under time warping. Time warping enables finding sequences with similar patterns even when they are of different lengths. The prefix-querying method is the first index-based approach that performs time-series subsequence matching under time warping without false dismissals. This method employs the $L_{\infty}$ as a base distance function for allowing users to issue queries conveniently. In this paper, we extend the prefix-querying method for absorbing $L_1$, which is the most-widely used as a base distance function in time-series subsequence matching under time warping, instead of $L_{\infty}$. We also formally prove that the proposed method does not incur any false dismissals in the subsequence matching. To show the superiority of our method, we conduct performance evaluation via a variety of experiments. The results reveal that our method achieves significant performance improvement in orders of magnitude compared with previous methods.

Stationary test of Annual precipitation in Korea using Data Screening (Data screening을 이용한 우리나라 연강수량 자료의 시계열 특성 분석)

  • Lim, Ga Kyun;Kang, Dong Ho;Jung, Se Jin;Kim, Byung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.231-231
    • /
    • 2019
  • 수문자료는 수문과정을 이해하고 그 특성을 파악하여 장래 예견되는 자연재해로부터 인간의 생명과 재산을 보호하는데 있어서 매우 중요하다. 특히 수자원 계획 수립 및 대규모 수공구조물 설계 시 수문학적 설계기준이 되는 강수량 및 유출량과 같은 설계 수문량을 정확하게 산정하기 위해서는 장기간의 과거자료가 필요하다. 그러나 한국의 경우 수문자료 관측을 위한 관측소가 대부분 근래에 설치되어 자료의 기록기간이 짧은 실정이며, 수문자료의 질적인 면에서의 신뢰성이 의심되는 경우가 많아 수문 시계열 자료의 특성을 파악하는 것이 더욱 중요하다. 한국의 경우 수문 시계열 자료가 정상성이나 독립성을 지니고 있다고 가정하고 수문분석을 실시하는 경우가 많기 때문에 정상성을 가정한 수문분석으로 인해 왜곡된 결과를 얻을 수 있는 가능성이 있다. 본 논문에서는 한국의 기상청 63개의 기상관측소 중 45년 이상의 장기간의 관측 자료를 가지고 있는 37개의 기상관측소의 연강수량 자료를 대상으로 Data Screening 방법을 이용하여 정상성 분석을 실시하였다. 분석결과 37개소의 기상관측소 연 강수량의 시계열 자료 중 4개 관측소의 연강수량 자료에서 경향성을 보였으며 평균과 분산의 시간변동성을 의미하는 안정성은 22개 관측소 연강수량 자료에서 불안정성을 나타내었다. 또한 4개 관측소 연강수량 자료에서 지속성을 나타내었다. 본 논문에서는 경향성이 없고 평균과 분산의 안정성이 존재하며 지속성을 보이지 않는다는 조건을 동시에 만족하는 연 강수량 시계열 자료만을 정상성이 있다고 판단하였으며 분석 결과, 37개 관측소 중 23개 관측소(약 62%) 연 강수량자료가 비정상성을 나타냄을 확인할 수 있다.

  • PDF

Development of Simulation Method of Doppler Power Spectrum and Raw Time Series Signal Using Average Moments of Radar Wind Profiler (윈드프로파일러의 평균모멘트 값을 이용한 도플러 파워 스펙트럼 및 시계열 원시신호 시뮬레이션기법 개발)

  • Lee, Sang-Yun;Lee, Gyu-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1037-1044
    • /
    • 2020
  • Since radar wind profiler (RWP) provides wind field data with high time and space resolution in all weather conditions, their verification of the accuracy and quality is essential. The simultaneous wind measurement from rawinsonde is commonly used to evaluate wind vectors from RWP. In this study, the simulation algorithm which produces the spectrum and raw time series (I/Q) data from the average values of moments is presented as a step-by-step verification method for the signal processing algorithm. The possibility of the simulation algorithm was also confirmed through comparison with the raw data of LAP-3000. The Doppler power spectrum was generated by assuming the density function of the skew-normal distribution and by using the moment values as the parameter. The simulated spectrum was generated through random numbers. In addition, the coherent averaged I/Q data was generated by random phase and inverse discrete Fourier transform, and raw I/Q data was generated through the Dirichlet distribution.

IoT Malware Detection and Family Classification Using Entropy Time Series Data Extraction and Recurrent Neural Networks (엔트로피 시계열 데이터 추출과 순환 신경망을 이용한 IoT 악성코드 탐지와 패밀리 분류)

  • Kim, Youngho;Lee, Hyunjong;Hwang, Doosung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.197-202
    • /
    • 2022
  • IoT (Internet of Things) devices are being attacked by malware due to many security vulnerabilities, such as the use of weak IDs/passwords and unauthenticated firmware updates. However, due to the diversity of CPU architectures, it is difficult to set up a malware analysis environment and design features. In this paper, we design time series features using the byte sequence of executable files to represent independent features of CPU architectures, and analyze them using recurrent neural networks. The proposed feature is a fixed-length time series pattern extracted from the byte sequence by calculating partial entropy and applying linear interpolation. Temporary changes in the extracted feature are analyzed by RNN and LSTM. In the experiment, the IoT malware detection showed high performance, while low performance was analyzed in the malware family classification. When the entropy patterns for each malware family were compared visually, the Tsunami and Gafgyt families showed similar patterns, resulting in low performance. LSTM is more suitable than RNN for learning temporal changes in the proposed malware features.

MLOps workflow language and platform for time series data anomaly detection

  • Sohn, Jung-Mo;Kim, Su-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.19-27
    • /
    • 2022
  • In this study, we propose a language and platform to describe and manage the MLOps(Machine Learning Operations) workflow for time series data anomaly detection. Time series data is collected in many fields, such as IoT sensors, system performance indicators, and user access. In addition, it is used in many applications such as system monitoring and anomaly detection. In order to perform prediction and anomaly detection of time series data, the MLOps platform that can quickly and flexibly apply the analyzed model to the production environment is required. Thus, we developed Python-based AI/ML Modeling Language (AMML) to easily configure and execute MLOps workflows. Python is widely used in data analysis. The proposed MLOps platform can extract and preprocess time series data from various data sources (R-DB, NoSql DB, Log File, etc.) using AMML and predict it through a deep learning model. To verify the applicability of AMML, the workflow for generating a transformer oil temperature prediction deep learning model was configured with AMML and it was confirmed that the training was performed normally.