• Title/Summary/Keyword: 시계열의 비선형성

Search Result 123, Processing Time 0.033 seconds

Study for Exchange rate, Interest, Stock price Using Quasi-Likelihood Estimatorfor (Quasi 우도추정량을 이용한 환율, 금리, 주가지수에 대한 연구)

  • Kim, In-Kyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.255-256
    • /
    • 2012
  • 본 논문에서는 비선형 시계열 자료를 이용한 Quasi-Score 추정함수를 정의하고 Quasi-Score 추정함수로부터 얻은 추정량의 극한분포를 제시한다. 그리고 금융외환시장의 불확실성을 나타내는 환율, 금리, 주가지수 등의 연관성에 관한 시계열 모형을 수립하고 Quasi 우도추정법을 이용하여 모수추정을 실시한다.

  • PDF

STL-Attention based Traffic Prediction with Seasonality Embedding (계절성 임베딩을 고려한 STL-Attention 기반 트래픽 예측)

  • Yeom, Sungwoong;Choi, Chulwoong;Kolekar, Shivani Sanjay;Kim, Kyungbaek
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.95-98
    • /
    • 2021
  • 최근 비정상적인 네트워크 활동 감지 및 네트워크 서비스 프로비저닝과 같은 다양한 분야에서 응용되는 네트워크 트래픽 예측 기술이 네트워크 통신 문제에 의한 트래픽의 결측 및 네트워크 유저의 불규칙한 활동에 의한 비선형 특성 때문에 발생하는 성능 저하를 극복하기 위해 딥러닝 신경망에 대한 연구가 활성화되고 있다. 이 딥러닝 신경망 중 시계열 딥러닝 신경망은 단기 네트워크 트래픽 볼륨을 예측할 때 낮은 오류율을 보인다. 하지만, 시계열 딥러닝 신경망은 기울기 소멸 및 폭발과 같은 비선형성, 다중 계절성 및 장기적 의존성 문제와 같은 한계를 보여준다. 이 논문에서는 계절성 임베딩을 고려한 주의 신경망 기반 트래픽 예측 기법을 제안한다. 제안하는 기법은 STL 분해 기법을 통해 분해된 트래픽 트랜드, 계절성, 잔차를 이용하여 일별 및 주별 계절성을 임베딩하고 이를 주의 신경망을 기반으로 향후 트래픽을 예측한다.

Nonlinear Time Series Prediction Modeling by Weighted Average Defuzzification Based on NEWFM (NEWFM 기반 가중평균 역퍼지화에 의한 비선형 시계열 예측 모델링)

  • Chai, Soo-Han;Lim, Joon-Shik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.563-568
    • /
    • 2007
  • This paper presents a methodology for predicting nonlinear time series based on the neural network with weighted fuzzy membership functions (NEWFM). The degree of classification intensity is obtained by bounded sum of weighted fuzzy membership functions extracted by NEWFM, then weighted average defuzzification is used for predicting nonlinear time series. The experimental results demonstrate that NEWFM has the classification capability of 92.22% against the target class of GDP. The time series created by NEWFM model has a relatively close approximation to the GDP which is a typical business cycle indicator, and has been proved to be a useful indicator which has the turning point forecasting capability of average 12 months in the peak point and average 6 months in the trough point during 5th to 8th cyclical period. In addition, NEWFM measures the efficiency of the economic indexes by the feature selection and enables the users to forecast with reduced numbers of 7 among 10 leading indexes while improving the classification rate from 90% to 92.22%.

Design of Multiple Model Fuzzy Prediction Systems Based on HCKA (HCKA 기반 다중 모델 퍼지 예측 시스템의 구현)

  • Bang, Young-Keun;Shim, Jae-Son;Park, Ha-Yong;Lee, Chul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1642_1643
    • /
    • 2009
  • 일반적으로, 퍼지 예측 시스템의 성능은 데이터의 특성과 퍼지 집합을 생성하기 위한 클러스터일 기법에 매우 의존적이다. 하지만, 예측을 위한 시계열 데이터들은 자연현상에 기인하는 강한 비선형적 특성을 가지고 있으므로 적합한 시스템을 구현하는 것에 많은 제약이 따른다. 따라서 본 논문에서는 시계열의 비선형적 특성을 적절히 취급하기 위하여, 그들로부터 생성 가능한 차분 데이터 중, 유효한 차분데이터를 이용하여 다중 모델 퍼지 예측 시스템을 구현함으로써, 보다 우수한 예측이 가능하도록 하였으며, 퍼지 시스템의 모델링에는 교차 상관분석기법에 따른 계층적 구조의 클러스터링 기법 (Hierarchical Cross-correlation and K-means Clustering Algorithms: HCKA)을 적용하여, 시스템을 위한 규칙기반의 적합성을 높일 수 있도록 하였다.

  • PDF

Forecasting the Time-Series Data Converged on Time PLOT and Moving Average (Time PLOT과 이동평균 융합 시계열 데이터 예측)

  • Lee, Jun-Yeon
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.4
    • /
    • pp.161-167
    • /
    • 2015
  • It is very difficult to predict time-series data. This is because data obtained from the signal having a non-linear characteristic has an uncertainty. In this paper, By differentiating time-series data is the average of the past data under the premise that change depending on what pattern, and find the soft look of time-series change pattern. This paper also apply the probability variables to generalize time-series data having a specific data according to the reflection ratio of the differentiation. The predicted value is estimated by removing cyclic movement and seasonal fluctuation, and reflect the trend by extracting the irregular fluctuation. Predicted value has demonstrated the superiority of the proposed algorithm and compared with the best results by a simple moving average and the moving average.

Time Series Stock Prices Prediction Based On Fuzzy Model (퍼지 모델에 기초한 시계열 주가 예측)

  • Hwang, Hee-Soo;Oh, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.689-694
    • /
    • 2009
  • In this paper an approach to building fuzzy models for predicting daily and weekly stock prices is presented. Predicting stock prices with traditional time series analysis has proven to be difficult. Fuzzy logic based models have advantage of expressing the input-output relation linguistically, which facilitates the understanding of the system behavior. In building a stock prediction model we bear a burden of selecting most effective indicators for the stock prediction. In this paper information used in traditional candle stick-chart analysis is considered as input variables of our fuzzy models. The fuzzy rules have the premises and the consequents composed of trapezoidal membership functions and nonlinear equations, respectively. DE(Differential Evolution) identifies optimal fuzzy rules through an evolutionary process. The fuzzy models to predict daily and weekly open, high, low, and close prices of KOSPI(KOrea composite Stock Price Index) are built, and their performances are demonstrated.

Nonlinear Forecasting of Daily Runoff Using Inverse Approach Method (가역접근법을 이용한 일유출량 자료의 비선형 예측)

  • Lee, Bae-Sung;Jeong, Dong-Kug;Jung, Tae-Sung;Lee, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.253-259
    • /
    • 2006
  • In almost all previous hydrological studies, the standard approach adopted for nonlinear time series analysis is to perform system characterization first followed by forecasting. However, a practical inverse approach for forecasting nonlinear hydrological time series was proposed recently To investigate the applicability standard approach method and inverse approach, this study used a theoretical time series (Mackey-Glass time series) and daily streamflows of the Bear River in Idaho. To predict a theoretical time series and daily streamflow, this study used local approximation method. From chaos analysis, chaotic characteristics are found in daily streamflow of the Bear River in Idaho. Resulting from 1, 3 and 5-day prediction, inverse approach method is shown to be better than the standard approach for a theoretical chaotic time series and daily streamflow.

Analyzing financial time series data using the GARCH model (일반 자기회귀 이분산 모형을 이용한 시계열 자료 분석)

  • Kim, Sahm;Kim, Jin-A
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.3
    • /
    • pp.475-483
    • /
    • 2009
  • In this paper we introduced a class of nonlinear time series models to analyse KOSPI data. We introduce the Generalized Power-Transformation TGARCH (GPT-TGARCH) model and the model includes Zakoian (1993) and Li and Li (1996) models as the special cases. We showed the effectiveness and efficiency of the new model based on KOSPI data.

  • PDF

주가시계열(株價時係列)의 성질(性質)과 특성(特性) : 한미비교(韓美比較)

  • Lee, Il-Gyun
    • The Korean Journal of Financial Studies
    • /
    • v.7 no.1
    • /
    • pp.1-47
    • /
    • 2001
  • 증권가격의 시계열을 그래프로 표시하면 이 시계열의 운동양태가 파악될 수도 있다. 그래프를 통하여 추세가 존재하고 있는지 아니면 존재하지 않는지를 파악할 수 있을 것이다. 그리고 이 그래프를 통하여 증권가격 시계열이 정상적과정에 의하여 생성되는지의 여부가 인식될 수도 있을 것이며, (조건부) 이분산이 존재하고 있는지 또는 (조건부) 동분산이 존재하고 있는지도 인식될 수 있을 것이다. 간단한 기술통계량을 통하여 증권시계열의 성질을 파악할수도 있다. 이 시계열이 선형과정에 의하여 생성되는지 아니면 비선형과정에 의하여 생성되는지도 인식할 수 있을 것이다. 뿐만아니라 비선형과정중 하나인 카오스 과정에 의하여 증권가격이 생성되는지의 여부도 파악할 수 있을 것이다. 증권가격의 실현된 표본경로와 시뮬레이션을 통하여 얻은 표본경로가 일치하는지 또는 불일치하는지에 대한 판별을 통하여 모형정립에서 특히 많이 사용되고 있는 확률과정들이 생성시키는 증권가격 시계열이 실제로 관찰된 가격 시계열과 일치하여 현실적합성을 가지고 있는지의 여부도 판단할 수 있을 것이다. 주가시계열 그 자체를 출발점으로 하여 이 시계열의 움직임과 행동양식을 파악해가면 수많은 연구를 통하여 축적된 이론들과 주가를 형성시키는 성질들이 현실적으로 성립하고 있는지도 밝힐 수 있고 개발된 이론들의 장점과 단점을 강도높게 밝힐 수 있는 계기도 갖게 될 것이다. 데이터를 있는 그대로 면밀하게 검토하면 이미 공개된 문제점(open question)도 확인할 수 있을 것이고 아직 알려지지 않은 문제점들과 질문들을 찾게 될 수도 있을 것이다. 이것들은 앞으로의 연구를 위한 중요한 발견이 될 수 있을 것이다. 이 논문에서는 문제와 질문의 발견에 초점을 둔다. 이 논문에서는 한국의 주식시장과 미국의 주식시장을 대비하여 다룬다. 우리가 그동안의 연구를 통하여 미국의 문헌과 미국의 시장에 대한 지식을 상당히 축적하고 있는 만큼 이 대비를 통하여 두 시장이 동일하게 가지고 있는 행동양태와 서로 상이하게 가지고 있는 점들을 파악하면 두 시장에 대한 이해의 폭도 넓어질 것이며 동시에 미국의 연구결과를 수용하는 큰 방향을 결정하는데에도 일조가 되리라고 생각된다.

  • PDF

Trend and Shift Analysis for Hydrologic and Climate Series (수문 및 기후 자료에 대한 선형 경향성 및 평균이동 분석)

  • Oh, Je Seung;Kim, Hung Soo;Seo, Byung Ha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.355-362
    • /
    • 2006
  • Several techniques of MK test, Spearman's Rho test, Linear Regression test, CUSUM test, Cumulative Deviation, Worsley Likelihood Ratio test, Rank Sum test, and Students' t test were applied to detect the trends of slope and shift which exist in hydrologic and climate time series. The time series of annual rainfall, inflow, tree ring index, and southern oscillation index (SOI) were used and the trends of these series were compared in the study. From the results, it can be found that the data could be classified into two categories such as linear trend and shift. 4 series data of 8 rainfall series which reveal the trend show the shift and 8 series data of 18 tree ring index and March and April series of monthly SOI data show shift. Moreover, ADF test and BDS test were used to test stationarity and non-linearity of the data. In conclusion, through the study, various trend analysis techniques were compared and 6 kinds of characteristics which can exist in hydrologic time series were identified.