Proceedings of the Korean Society of Computer Information Conference
/
2012.01a
/
pp.255-256
/
2012
본 논문에서는 비선형 시계열 자료를 이용한 Quasi-Score 추정함수를 정의하고 Quasi-Score 추정함수로부터 얻은 추정량의 극한분포를 제시한다. 그리고 금융외환시장의 불확실성을 나타내는 환율, 금리, 주가지수 등의 연관성에 관한 시계열 모형을 수립하고 Quasi 우도추정법을 이용하여 모수추정을 실시한다.
최근 비정상적인 네트워크 활동 감지 및 네트워크 서비스 프로비저닝과 같은 다양한 분야에서 응용되는 네트워크 트래픽 예측 기술이 네트워크 통신 문제에 의한 트래픽의 결측 및 네트워크 유저의 불규칙한 활동에 의한 비선형 특성 때문에 발생하는 성능 저하를 극복하기 위해 딥러닝 신경망에 대한 연구가 활성화되고 있다. 이 딥러닝 신경망 중 시계열 딥러닝 신경망은 단기 네트워크 트래픽 볼륨을 예측할 때 낮은 오류율을 보인다. 하지만, 시계열 딥러닝 신경망은 기울기 소멸 및 폭발과 같은 비선형성, 다중 계절성 및 장기적 의존성 문제와 같은 한계를 보여준다. 이 논문에서는 계절성 임베딩을 고려한 주의 신경망 기반 트래픽 예측 기법을 제안한다. 제안하는 기법은 STL 분해 기법을 통해 분해된 트래픽 트랜드, 계절성, 잔차를 이용하여 일별 및 주별 계절성을 임베딩하고 이를 주의 신경망을 기반으로 향후 트래픽을 예측한다.
Journal of the Korean Institute of Intelligent Systems
/
v.17
no.4
/
pp.563-568
/
2007
This paper presents a methodology for predicting nonlinear time series based on the neural network with weighted fuzzy membership functions (NEWFM). The degree of classification intensity is obtained by bounded sum of weighted fuzzy membership functions extracted by NEWFM, then weighted average defuzzification is used for predicting nonlinear time series. The experimental results demonstrate that NEWFM has the classification capability of 92.22% against the target class of GDP. The time series created by NEWFM model has a relatively close approximation to the GDP which is a typical business cycle indicator, and has been proved to be a useful indicator which has the turning point forecasting capability of average 12 months in the peak point and average 6 months in the trough point during 5th to 8th cyclical period. In addition, NEWFM measures the efficiency of the economic indexes by the feature selection and enables the users to forecast with reduced numbers of 7 among 10 leading indexes while improving the classification rate from 90% to 92.22%.
일반적으로, 퍼지 예측 시스템의 성능은 데이터의 특성과 퍼지 집합을 생성하기 위한 클러스터일 기법에 매우 의존적이다. 하지만, 예측을 위한 시계열 데이터들은 자연현상에 기인하는 강한 비선형적 특성을 가지고 있으므로 적합한 시스템을 구현하는 것에 많은 제약이 따른다. 따라서 본 논문에서는 시계열의 비선형적 특성을 적절히 취급하기 위하여, 그들로부터 생성 가능한 차분 데이터 중, 유효한 차분데이터를 이용하여 다중 모델 퍼지 예측 시스템을 구현함으로써, 보다 우수한 예측이 가능하도록 하였으며, 퍼지 시스템의 모델링에는 교차 상관분석기법에 따른 계층적 구조의 클러스터링 기법 (Hierarchical Cross-correlation and K-means Clustering Algorithms: HCKA)을 적용하여, 시스템을 위한 규칙기반의 적합성을 높일 수 있도록 하였다.
It is very difficult to predict time-series data. This is because data obtained from the signal having a non-linear characteristic has an uncertainty. In this paper, By differentiating time-series data is the average of the past data under the premise that change depending on what pattern, and find the soft look of time-series change pattern. This paper also apply the probability variables to generalize time-series data having a specific data according to the reflection ratio of the differentiation. The predicted value is estimated by removing cyclic movement and seasonal fluctuation, and reflect the trend by extracting the irregular fluctuation. Predicted value has demonstrated the superiority of the proposed algorithm and compared with the best results by a simple moving average and the moving average.
Journal of the Korean Institute of Intelligent Systems
/
v.19
no.5
/
pp.689-694
/
2009
In this paper an approach to building fuzzy models for predicting daily and weekly stock prices is presented. Predicting stock prices with traditional time series analysis has proven to be difficult. Fuzzy logic based models have advantage of expressing the input-output relation linguistically, which facilitates the understanding of the system behavior. In building a stock prediction model we bear a burden of selecting most effective indicators for the stock prediction. In this paper information used in traditional candle stick-chart analysis is considered as input variables of our fuzzy models. The fuzzy rules have the premises and the consequents composed of trapezoidal membership functions and nonlinear equations, respectively. DE(Differential Evolution) identifies optimal fuzzy rules through an evolutionary process. The fuzzy models to predict daily and weekly open, high, low, and close prices of KOSPI(KOrea composite Stock Price Index) are built, and their performances are demonstrated.
In almost all previous hydrological studies, the standard approach adopted for nonlinear time series analysis is to perform system characterization first followed by forecasting. However, a practical inverse approach for forecasting nonlinear hydrological time series was proposed recently To investigate the applicability standard approach method and inverse approach, this study used a theoretical time series (Mackey-Glass time series) and daily streamflows of the Bear River in Idaho. To predict a theoretical time series and daily streamflow, this study used local approximation method. From chaos analysis, chaotic characteristics are found in daily streamflow of the Bear River in Idaho. Resulting from 1, 3 and 5-day prediction, inverse approach method is shown to be better than the standard approach for a theoretical chaotic time series and daily streamflow.
Journal of the Korean Data and Information Science Society
/
v.20
no.3
/
pp.475-483
/
2009
In this paper we introduced a class of nonlinear time series models to analyse KOSPI data. We introduce the Generalized Power-Transformation TGARCH (GPT-TGARCH) model and the model includes Zakoian (1993) and Li and Li (1996) models as the special cases. We showed the effectiveness and efficiency of the new model based on KOSPI data.
증권가격의 시계열을 그래프로 표시하면 이 시계열의 운동양태가 파악될 수도 있다. 그래프를 통하여 추세가 존재하고 있는지 아니면 존재하지 않는지를 파악할 수 있을 것이다. 그리고 이 그래프를 통하여 증권가격 시계열이 정상적과정에 의하여 생성되는지의 여부가 인식될 수도 있을 것이며, (조건부) 이분산이 존재하고 있는지 또는 (조건부) 동분산이 존재하고 있는지도 인식될 수 있을 것이다. 간단한 기술통계량을 통하여 증권시계열의 성질을 파악할수도 있다. 이 시계열이 선형과정에 의하여 생성되는지 아니면 비선형과정에 의하여 생성되는지도 인식할 수 있을 것이다. 뿐만아니라 비선형과정중 하나인 카오스 과정에 의하여 증권가격이 생성되는지의 여부도 파악할 수 있을 것이다. 증권가격의 실현된 표본경로와 시뮬레이션을 통하여 얻은 표본경로가 일치하는지 또는 불일치하는지에 대한 판별을 통하여 모형정립에서 특히 많이 사용되고 있는 확률과정들이 생성시키는 증권가격 시계열이 실제로 관찰된 가격 시계열과 일치하여 현실적합성을 가지고 있는지의 여부도 판단할 수 있을 것이다. 주가시계열 그 자체를 출발점으로 하여 이 시계열의 움직임과 행동양식을 파악해가면 수많은 연구를 통하여 축적된 이론들과 주가를 형성시키는 성질들이 현실적으로 성립하고 있는지도 밝힐 수 있고 개발된 이론들의 장점과 단점을 강도높게 밝힐 수 있는 계기도 갖게 될 것이다. 데이터를 있는 그대로 면밀하게 검토하면 이미 공개된 문제점(open question)도 확인할 수 있을 것이고 아직 알려지지 않은 문제점들과 질문들을 찾게 될 수도 있을 것이다. 이것들은 앞으로의 연구를 위한 중요한 발견이 될 수 있을 것이다. 이 논문에서는 문제와 질문의 발견에 초점을 둔다. 이 논문에서는 한국의 주식시장과 미국의 주식시장을 대비하여 다룬다. 우리가 그동안의 연구를 통하여 미국의 문헌과 미국의 시장에 대한 지식을 상당히 축적하고 있는 만큼 이 대비를 통하여 두 시장이 동일하게 가지고 있는 행동양태와 서로 상이하게 가지고 있는 점들을 파악하면 두 시장에 대한 이해의 폭도 넓어질 것이며 동시에 미국의 연구결과를 수용하는 큰 방향을 결정하는데에도 일조가 되리라고 생각된다.
KSCE Journal of Civil and Environmental Engineering Research
/
v.26
no.4B
/
pp.355-362
/
2006
Several techniques of MK test, Spearman's Rho test, Linear Regression test, CUSUM test, Cumulative Deviation, Worsley Likelihood Ratio test, Rank Sum test, and Students' t test were applied to detect the trends of slope and shift which exist in hydrologic and climate time series. The time series of annual rainfall, inflow, tree ring index, and southern oscillation index (SOI) were used and the trends of these series were compared in the study. From the results, it can be found that the data could be classified into two categories such as linear trend and shift. 4 series data of 8 rainfall series which reveal the trend show the shift and 8 series data of 18 tree ring index and March and April series of monthly SOI data show shift. Moreover, ADF test and BDS test were used to test stationarity and non-linearity of the data. In conclusion, through the study, various trend analysis techniques were compared and 6 kinds of characteristics which can exist in hydrologic time series were identified.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.