• Title/Summary/Keyword: 시간 패턴

Search Result 2,943, Processing Time 0.028 seconds

KISS Korea Computer Congress 2007 (이동 객체의 패턴 탐사를 위한 시공간 데이터 일반화 기법)

  • Ko, Hyun;Kim, Kwang-Jong;Lee, Yon-Sik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.153-158
    • /
    • 2007
  • 사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 제공하기 위해서는 방대한 이동 객체의 위치 이력 데이터 집합으로부터 유용한 패턴을 추출하여 의미 있는 지식을 탐사하기 위한 시공간 패턴 탐사가 필요하다. 현재까지 다양한 패턴 탐사 기법들이 제안되었으나 이동 패턴들 중 단순히 시공간 제약이 없는 빈발 패턴만을 추출하기 때문에 한정된 시간 범위와 제한적인 영역 범위 내에서의 빈발 패턴을 탐사하는 문제에는 적용하기 어렵다. 또한 패턴 탐사 수행 시 데이터베이스를 반복 스캔하여 탐사 수행시간이 많이 소요되는 문제를 포함하거나 메모리상에 탐사 대상인 후보 패턴 트리를 생성하는 방법을 통해 탐사 시간을 줄일 수는 있으나 이동 객체 수나 최소지지도 등에 따라 트리를 구성하고 유지하는데 드는 비용이 커질 수 있다. 따라서 이러한 문제를 해결하기 위한 효율적인 패턴 탐사 기법의 개발이 요구됨으로써 선행 작업으로 본 논문에서는 상세 수준의 객체 이력 데이터들의 시간 및 공간 속성을 의미 있는 시간영역과 공간영역 정보로 변환하는 시공간 데이터 일반화 방법을 제안한다. 제안된 방법은 공간 개념 계층에 대한 영역 정보들을 영역 Grid 해쉬 테이블(AGHT:Area Grid Hash Table)로 생성하여 공간 인덱스트리인 R*-Tree의 검색 방법을 이용해 이동 객체의 위치 속성을 2차원 공간영역으로 일반화하고, 시간 개념 계층을 생성하여 이동 객체의 시간적인 속성을 시간 영역으로 일반화함으로써 일반화된 데이터 집합을 형성하여 효율적인 이동 객체의 시간 패턴 마이닝을 유도할 수 있다.의 성능을 기대할 수 있을 것이다.onium sulfate첨가배지(添加培地)에서 가장 저조(低調)하였다. vitamin중(中)에서는 niacin과 thiamine첨가배지(添加培地)에서 근소(僅少)한 증가(增加)를 나타내었다.소시켜 항이뇨 및 Na 배설 감소를 초래하는 작용과, 둘째는 신경 경로를 통하지 않고, 아마도 humoral factor를 통하여 신세뇨관에서 Na 재흡수를 억제하는 작용이 복합적으로 나타내는 것을 알 수 있었다.으로 초래되는 복합적인 기전으로 추정되었다., 소형과와 기형과는 S-3에서 많이 나왔다. 이상 연구결과에서 입도분포가 1.2-5mm인 것이 바람직한 것으로 나타났다.omopolysaccharides로 확인되었다. EPS 생성량이 가장 좋은 Leu. kimchii GJ2의 평균 분자량은 360,606 Da이었으며, 나머지 두 균주에 대해서는 생성 EPS 형태와 점도의 차이로 미루어 보아 생성 EPS의 분자구조와 분자량이 서로 다른 것으로 판단하였다.TEX>개로 통계학적으로 유의한 차이가 없었다. Heat shock protein-70 (HSP70)과 neuronal nitric oxide synthase (nNOS)에 대한 면역조직화학검사에서 실험군 Cs2군의 신경세포가 대조군 12군에 비해 HSP70과 nNOS의 과발현을 보였으며, 이는 통계학적으로 유의한 차이를 보였다(p<0.05). nNOS와 HSP70의 발현은 강한 연관성을 보였고(상관계수 0.91, p=0.000), nNOS를 발현하는 세포가 동시에 HSP70도 발현함을 확인할 수 있었다. 결론: 우리는

  • PDF

A Method for Finding Accompany Group from Trajectory Stream Data (궤적 스트림 데이터로부터 동행 그룹 탐색 기법)

  • kang, Suhyun;Lee, Ki Yong
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.363-366
    • /
    • 2019
  • 객체들의 움직임의 흐름을 나타내는 궤적 데이터에서 함께 움직이는 궤적을 찾아 움직임 패턴을 탐색하는 연구들이 많이 이루어져 왔다. 하지만, 궤적 스트림 데이터에서 궤적의 이동 패턴을 탐색하는 연구는 많이 이루어지지 않았다. 그래서 본 논문은 시간의 흐름에 따라 흘러 들어오는 궤적 스트림 데이터에서 궤적의 이동 패턴을 탐색하여 동행 그룹을 탐색하는 새로운 방법을 제안한다. 기존에도 궤적 스트림 데이터에서 궤적들이 주어졌을 때 궤적들의 이동 패턴을 찾는 연구들은 존재하였으나 발견된 궤적이 언제 생성되었고 언제 소멸되었는지에 대한 정보를 자동으로 출력해 주는 연구는 아직 이루어진 바가 없다. 본 논문에서는 서로 다른 시간에 나타나고 사라지는 모습을 가진 궤적 스트림 데이터에서 동일한 시간에 나타나는 궤적을 찾는 방법을 제안한다. 제안 방법은 객체들의 좌표를 점진적으로 클러스터링을 수행하여 사용자에게 입력받은 지속 시간 이상 클러스터를 유지한 동행 그룹의 객체들을 반환한다. 또한, 기존 연구와 달리 해당 객체들의 지속 시간인 시작과 끝 시간도 자동으로 출력해 준다.

A Pattern Consistency Index for Detecting Heterogeneous Time Series in Clustering Time Course Gene Expression Data (시간경로 유전자 발현자료의 군집분석에서 이질적인 시계열의 탐지를 위한 패턴일치지수)

  • Son, Young-Sook;Baek, Jang-Sun
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.371-379
    • /
    • 2005
  • In this paper, we propose a pattern consistency index for detecting heterogeneous time series that deviate from the representative pattern of each cluster in clustering time course gene expression data using the Pearson correlation coefficient. We examine its usefulness by applying this index to serum time course gene expression data from microarrays.

A Method for Time Segment based Activity Pattern Graph Modeling (시간 세그먼트 기반 행위 패턴 그래프 모델링 기법)

  • Park, Ki-Sung;Han, Yong-Koo;Kim, Jin-Seung;Lee, Young-Koo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.183-185
    • /
    • 2012
  • 행위 DB로부터 행위패턴 분석 및 마이닝을 위해서는 정교한 행위패턴 모델링 기술이 수반되어야 한다. 기존의 그래프기반 행위 패턴 모델링 방법은 하루 행위 시퀀스들의 동일한 행위 시퀀스 세그먼트를 찾아 하나의 행위 시퀀스로 결합시켜 행위 그래프를 생성하였다. 이 방법은 서로 다른 시간에 발생한 행위 시퀀스 세그먼트들이 하나의 행위 시퀀스로 결합되는 문제가 발생한다. 본 논문에서는 하루의 행위 시퀀스를 시간 세그먼트 단위로 분할하고, 각 시간 세그먼트별로 행위 그래프를 생성하여 정교한 행위 그래프 모델을 수립하는 방법을 제안한다. 그래프 마이닝 기법들을 활용한 실험을 통하여 제안하는 행위패턴 모델링 기법이 기존의 행위 그래프 모델 기법보다 더 유용함을 보인다.

An Efficient Cache Coherence Method based on timely periodic conduct pattern by Mobile Computing Environments (이동 컴퓨팅 환경에서의 시간 주기적인 행동 패턴에 따른 효율적인 캐쉬 일관성 기법)

  • Seo, Dong-Ho;Suh, Hyo-Jung
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.1447-1449
    • /
    • 2007
  • 본 논문은 이동 컴퓨팅 환경에서 시간 주기적인 인간의 행동 패턴에 따른 캐쉬 일관성 기법을 제안하고자 한다. 행동 유형 모델을 근거로 하여 시간 주기적인 행동의 패턴과 이동 기기의 사용 패턴이 동일 또는 흡사함을 가정한다. 이를 통해 패턴 예측 테이블을 구성하고, 시간대별로 구성된 테이블의 예측 데이터를 사용하여 서버와의 통신할 때 지연 현상을 방지 하는 기법을 제안한다.

Pattern Validation using Temporal Logic for Fraud Detection (부정행위 탐색을 위한 시간 논리 기반의 패턴 유효성 검사 방법)

  • 이건수;김민구;이형수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.148-150
    • /
    • 2004
  • 부정행위 탐지는 개별 사용자의 행동 기록과 그 사용자와 유사한 프로필을 갖고 있는 사용자들의 행동 기록을 바탕으로 행동 패턴 혹은 행동 규칙을 찾아내, 이 패턴/규칙과의 비교를 통해 현재 행위가 부정한 것인지를 결정하는 방법을 주로 사용한다. 그러나, 특정 사용자의 행위패턴이 급격하게 바뀌는 경우, 과거의 기록을 바탕으로 생성된 패턴의 유효성은 보장받을 수 없다. 더구나 기존 기록과 상이한 행위에 대한 새로운 패턴이 생성되기 위해서는 계속해서 그런 행위가 쌓여야만 하고, 그 쌓이는 양은 기존 패턴의 견고성에 비례된다. 또한 동일 사용자에게 털러 패턴을 적용시키는 방법 역시 패턴간의 충돌이 일어나는 등의 한계가 존재한다. 본 논문에서는 시간 논리(Temporal Logic)를 적용하여, 과거의 패턴의 유효성을 검증하고 신규패턴을 빠르게 찾아내는 방법을 제안하고자 한다.

  • PDF

Rule discovery for sequential patterns of trend from Time-Series (시계열 데이터로부터 경향성을 이용한 순차패턴의 탐색)

  • 오용생;남도원;장지숙;이동하;이전영
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.325-332
    • /
    • 2000
  • 데이터마이닝 분야에서 시계얼 데이터(time-series data)내에서 숨어 있는 순차패턴의 발견은 상품(Items)이나 어떤 사건(Event)과 같이 데이터의 특징이 명확한 대상에 대한 연구는 많이 되어왔으나 수치 값을 가지는 시계열 데이터에서 이들 내부에 숨어 있는 패턴을 발견하는 것은 최근에 관심을 가지게 되었다. 우리는 시계열 데이터를 시간적 변화에 따라 값의 변화 경향(Trend)이 같은 데이터 그룹을 패턴 요소인 벡터 (Vestor)로 표현하여 이들을 이용해서 흥미로운 패턴들을 발견한다. 이와 같은 벡터적인 표현으로 우리는 벡터들 간의 포함관계를 적용해 모든 가능한 형태의 패턴 발견을 목적으로 한다. 또한 경향성을 가진 패턴 요소를 사건(Event)과 같이 취급함으로써 다양한 종류의 시계열 데이터가 동시에 발생될 때 이들 상호간에 연관된 시간적 패턴을 찾을 수 있다. 따라서 이 연구에서 제안하는 경향성을 기초로 한 순차패턴의 탐식은 기업내부의 판매실적의 변화 패턴이나, 고객의 구매 행동분석에 적용이 가능하리라 여겨진다

  • PDF

Temporal Pattern Mining of Moving Objects for Location based Services (위치 기반 서비스를 위한 이동 객체의 시간 패턴 탐사 기법)

  • Lee, Jun-Uk;Baek, Ok-Hyeon;Ryu, Geun-Ho
    • Journal of KIISE:Databases
    • /
    • v.29 no.5
    • /
    • pp.335-346
    • /
    • 2002
  • LBS(Location Based Services) provide the location-based information to its mobile users. The primary functionality of these services is to provide useful information to its users at a minimum cost of resources. The functionality can be implemented through data mining techniques. However, conventional data mining researches have not been considered spatial and temporal aspects of data simultaneously. Therefore, these techniques are inappropriate to apply on the objects of LBS, which change spatial attributes over time. In this paper, we propose a new data mining technique for identifying the temporal patterns from the series of the locations of moving objects that have both temporal and spatial dimension. We use a spatial operation of contains to generalize the location of moving point and apply time constraints between the locations of a moving object to make a valid moving sequence. Finally, the spatio-temporal technique proposed in this paper is very practical approach in not only providing more useful knowledge to LBS, but also improving the quality of the services.

Web Access Pattern Mining considering Page Visiting Duration Time (페이지 소요 시간을 고려한 웹 액세스 패턴 마이닝)

  • 성현정;용환승
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.55-57
    • /
    • 2001
  • 웹로그 마이닝은 대용량의 웹로그 데이터로부터 웹액세스 패턴을 추출함으로써 사용자의 행등 패턴을 찾아내는데 이러한 작업은 웹사이트 설계상의 문제점 등을 발견 및 보완하거나 사용자에게 개인화 페이지를 제공하는데 이용될 수 있다. 사용자의 관심도를 반영하는 웹액세스 패턴을 추출할 때 페이지의 액세스 횟수 뿐만 아니라 페이지의 소요 시간까지 고려함으로써 더욱 정확한 액세스 패턴을 추출하는 것이 본 논문의 목적이다.

  • PDF

An Encoding Method of Sequential Patterns using Energy-based models (에너지 기반 모델을 이용한 순차 패턴 부호화 방법)

  • Heo, Min-Oh;Kim, Kwon-Ill;Lee, Sang-Woo;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.330-332
    • /
    • 2012
  • 시계열 데이터 모델링은 시간 간격의 길이에 따라 단기적인 패턴이 주로 반영된다. 특히, 모델에 마코프 가정을 적용하였을 경우 이전 시간의 값에 따라 현재값이 결정된다. 시계열 데이터의 장기적인 변화를 다루기 위해, 특정 길이의 순차적 패턴을 부호화 하고, 이를 상위 모델의 입력으로 사용하는 과정을 통해 추상화를 시도하고자 한다. 실제로 사람의 감각기억은 200~500 밀리초 가량의 짧은 기억 유지기간을 갖는데, 이 기간의 정보를 상위 처리기의 입력 단위로 보고자 하는 것이다. 이에 본 고에서는 에너지기반 모델링 기법을 이용하여 반복적으로 나타나는 순차적 패턴을 부호화 하는 방법을 제안한다. 이 부호화 방법은 시간 순서에 따른 패턴의 유사도를 이용하여 확률적으로 다음 패턴과의 관계를 표현할 수 있으며, 이는 향후 시계열 데이터를 간략하게 표현하여 분석 및 시각화에 도움을 줄 수 있다.