이 논문에서는 시간지원 데이터베이스를 대상으로 하여 시간 간격과 시간 위상을 지닌 데이터에서의 정보를 탐사한다. 그리고 시간지원 데이터베이스에서의 시간 정보 유형을 제시하고 이에 따라 탐사되는 패턴의 유형을 분류한다. 또한 시간에 대한 계층적 구조인 시간 계층을 도입하고 이를 이용하여 각 항목의 유효시간 정보를 일반화시킨다. 시간 계층에 의한 유효시간의 일반화에 있어서 발생하는 시간 정보 유형의 변화와 패턴 유형의 변화를 살펴본다. 그리고 시간 간격 변화에 따른 패턴 정보의 발견을 예를 들어 기술한다. 이 논문에서는 시간 계층을 이용하여 시간 간격을 변화시킬 경우 발견되는 새로운 유형의 패턴 지식을 탐사하고 이를 제시한다.
위치 기반 서비스가 무선 인터넷의 새로운 이슈로 떠오르고 있다. 이동 객체의 패턴 마이닝은 이동 객체의 시간 패턴을 탐사함으로써 이동 객체에 위치에 기반한 유용한 서비스를 제공할 수 있게 해준다. 이동 객체는 시간에 따라 빈번하게 이동하기 때문에 패턴도 최근의 경향을 반영하기 위해 빈번하게 탐사되어야 한다. 따라서 점진적으로 시간 패턴을 탐사하는 접근법이 요구된다. 이 논문에서는 이동 객체의 시간 패턴을 탐사하는데 있어서 측정된 위치 데이터가 가질 수 있는 모호성을 제시했다. 또한 모호성을 고려한 시간 패턴 마이닝를 위해 패턴 탐사 단계에서의 모호성의 처리를 위해 모호성을 원인에 따라 세 가지 임계치를 정의하였다. 그리고 이러한 임계치를 고려한 시간 패턴 마이닝 프로시저 구조를 제시하였다.
사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 제공하기 위해서는 방대한 이동객체의 위치 이력 데이터로부터 유용한 패턴을 추출하기 위한 시간 패턴 탐사가 필요하다. 기존의 시간 패턴 탐사 기법들은 이동 객체의 시간에 따른 공간 속성들의 변화를 충분히 고려하지 못하거나, 시공간 속성을 동시에 고려한 패턴 탐사는 가능하나 제약을 가진 공간 정보를 포함하는 패턴 탐사 문제에는 적용하기 어렵다. 따라서 이동 객체의 위치 이력 데이터들에 대한 시공간적 속성들을 동시에 고려하여 다양한 이동 패턴들 중 공간 제약을 만족하는 패턴들을 추출하기 위한 새로운 이동 패턴 탐사 기법이 요구된다. 이러한 패턴 탐사 기법의 개발을 위해서는 상세 수준의 위치 이력 데이터들을 공간 영역 정보 형태로 변환하는 위치 일반화 접근법이 필요하다. 이에 본 논문에서는 객체의 위치값과 공간 영역간의 위상 관계를 고려하여 이동 객체의 위치 속성에 대한 공간영역으로의 일반화 방법을 제안한다. 이동 객체의 상세 수준의 위치 정보에서는 의미있는 패턴을 찾기가 어렵기 때문에 데이터 전처리 과정을 통해 일반화된 데이터 집합을 형성함으로써 효율적인 이동 객체의 시간 패턴 마이닝을 유도할 수 있다.
본 연구는 리마인더 앱을 위한 효과적인 시간 표현 분석 방법을 제안한다. 시간 표현 분석을 위한 정규식 패턴을 이용하여 사용자 발화 텍스트로부터 시간 정보를 분석하고 시간 표현 유형에 따라 절대적 시간 정보로 변환한다. 제안한 방법은 정규식 패턴을 이용한 시간 표현 분석 기법으로 시스템의 유지 관리가 용이하고 정보량이 많은 패턴과의 매칭을 위해 효과적이다.
본 연구에서는 도시 가로망에서의 구간 통행시간을 예측하기 위하여 time-frequency 분석의 일종인 웨이브렛변환과 RBF신경망 모형을 이용한 예측모형을 개발하였다. 웨이브렛 변환을 이용한 시계열 자료 분석을 통해서 통행시간에 내재되어 있는 다양한 패턴의 특징을 추출함으로써 오전/오후의 첨두현상, 신호교차로의 현시주기 등 주기적으로 발생되는 요인들에 의해서 통행시간 시계열 자료의 패턴에 나타나는 규칙성을 분석해 내었다. 분석된 패턴정보에 대한 규명은 카오스 이론을 근간으로한 시간지연좌표를 이용하여 시계열 자료의 규칙성을 시각적으로 판별하여 예측모형 구축에 활용하도록 하였다. 또, RBF신경망을 이용하여 예측범위의 공간적/시간적 확대에 따른 모형 구축에 소요되는 시간을 최소화하도록 하였으며, 시내버스 노선의 정류장간 운행시간 예측을 통해서 기존 연구에서 제기되었던 현실세계의 단순화, 다단계 예측시 정확성 등의 문제를 해결하였다. 예측실험결과 웨이브렛 변환을 데이터의 전처리 과정에 삽입하여 링크 통행시간의 패턴정보 예측에 활용할 경우, 기존의 예측모형에 비해서 훨씬 정확한 예측이 가능한 것으로 나타났으며, RBF 신경망은 짧은 학습시간에도 불구하고 역전파 신경망보다 우수한 예측력을 갖고 있는 것으로 밝혀졌다.
최근 위치 측위 기술의 발달 및 GPS 기술의 상용화로 인해 무선 통신 기기의 보급이 증가하면서 다양한 위치 기반 서비스 개발을 위한 노력이 활발히 진행되고 있다. 사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 제공하기 위해서는 방대한 이동 객체의 위치 이동 데이터로부터 의미있는 지식인 유용한 패턴을 추출하기 위한 시간 패턴 탐사가 필요하다. 기존의 시간 패턴 탐사 기법들 중 일부는 이동 객체의 시간에 따른 공간 속성들의 변화를 충분히 고려하지 못하거나 또는 시공간 속성을 동시에 고려한 패턴 탐사는 가능하나 전체 이동 패턴들 중 추출하고자 하는 패턴에 반드시 포함되어야 하는 공간 정보에 대한 제약이 없어 특정 지점들 사이의 최적 이동 경로 탐색 문제나 단위기간 동안 이동 객체가 순회해야 지점들에 대한 스케줄링 경로 예측 문제 등에 적용하기 어렵다. 따라서 본 논문에서는 이동 객체의 위치 이력 데이터들에 대한 시공간 속성들을 고려하여 다양한 이동 패턴들 중 객체의 최적 이동 경로에 해당하는 패턴을 탐색하기 위한 새로운 시간 패턴 마이닝 알고리즘을 제안한다. 제안된 알고리즘은 특정한 지점들 사이를 이동한 객체의 위치 데이터들 중 객체가 가장 빈번하게 이동한 경로를 탐색하여 최적 경로를 결정하는 알고리즘으로, 공간 추상 계층의 각 계층별 영역 내 포함여부를 고려한 위치 일반화를 수행하여 보다 효과적으로 이동 패턴을 탐색할 수 있다.
최근 이동 객체의 동적인 위치나 이동성에 기반하여 여러 분야에 적용가능한 위치 기반 서비스를 개발하고자 다양한 객체의 이동 패턴들로 부터 유용한 패턴을 추출하기 위한 패턴 탐사 기법에 대한 연구가 활발히 진행되고 있다. 이동 패턴 탐사는 특성상 방대한 시공간 데이터의 분석 및 처리 방법에 따라 패턴 탐사의 성능이 좌우된다. 기존의 시공간 패턴 탐사 기법들[1-6,8-11] 중 일부는 이러한 문제를 해결하기 위한 방법을 제시하였으나, 패턴 탐사 수행 시간이나 패턴 탐사 시 사용되는 메모리양을 최소화하는데 있어 아직 부족한 실정이다. 이에 본 논문에서는 방대한 시공간 이동 데이터 집합으로부터 순차적이고 주기적인 빈발 이동 패턴을 효과적으로 추출하기 위한 새로운 시공간 이동 패턴 탐사기법을 제안한다. 제안된 기법에서는 이동 객체의 이력 데이터로부터 해시 트리 기반의 이동 시퀀스 트리를 생성하여 빈발 이동 패턴을 탐사함으로써 탐사 수행 시간을 $83%{\sim}93%$ 감소시키고, 시간 및 공간 속성을 가진 상세 수준의 이력 데이터들을 공간 및 시간 개념 계층을 이용하여 실세계의 의미있는 시간 및 공간영역으로 일반화함으로써 탐사 시 소요되는 메모리양을 감소시켜 보다 효과적인 패턴 탐사를 유도한다.
순차 패턴 탐사 기법은 순서를 갖는 패턴들의 집합 중에 빈발하게 발생하는 패턴을 찾아내는 기법이다. 순차 패턴 탐사 분야 중에 동적 가중치 순차 패턴 탐사는 가중치가 시간에 따라 변화하는 컴퓨팅 환경에 적용하는 마이닝 기법으로 동적인 중요도 변화를 마이닝에 적용하여 다양한 환경에서 활용 가능하다. 이 논문에서는 다양한 순차 데이터에서 동적 가중치를 적용하여 순차 패턴을 탐사하는 새로운 시퀀스 데이터 마이닝 기법에 대하여 제안한다. 제안하는 기법은 시간 순서에 의한 상대적인 동적 가중치를 사용하여 탐색해야 하는 후보 패턴을 줄여줄 수 있어 빈발한 시퀀스 패턴을 빠르게 찾을 수 있다. 이 기법을 사용하면 기존 가중치를 적용하는 방식보다 메모리 사용과 처리 시간을 줄여줘 매우 효율적이다.
최근 VHDL 코딩 및 합성방법에 의한 설계가 널리 사용되고 있다. 집적도가 증가함에 따라 VHDL에 의한 설계 또한 그 분량이 증가하여 많은 코딩오류가 발생하고 있으며, 이를 검색하는데 많은 시간과 노력이 소요되고 있다. 본 논문에서는 VHDL 행위-레벨 설계를 대상으로 코딩오류를 검색하는 방법을 제안하였다. 그 방법에 있어서는 검색패턴을 생성하여 오류가 없는 응답과 설계의 응답을 비교함으로써 설계오류를 찾는 방법을 택하였다. 따라서 본 논문에서는 코딩오류를 검색하기 위한 검색패턴을 생성하는 알고리듬을 제안하였다. 검색패턴 생성은 각 코드에 대해 수행하며, 할당오류와 조건오류를 구분하여 수행하였다. 패턴생성을 위해 VHDL 코드를 CDFG로 변환하여 사용하며, CDFG상의 경로를 탐색하여 패턴생성에 필요한 정보를 추출한다. 경로탐색은 오류가 발생하였다고 가정한 지점으로부터 역방향 탐색과 정방향 탐색을 수행하여 패턴을 생성한다. 제안한 알고리듬은 C-언어로 구현하였다. 펜티엄-Ⅱ 400MHz의 환경에서 여러 가지 VHDL 행위-레벨 설계를 대상으로 제안한 알고리듬을 적용하였다. 그 결과, 고려한 모든 설계의 모든 코드에 대한 검색패턴을 생성할 수 있었으며, 가정한 모든 오류를 검색할 수 있었다. 검색패턴 생성에 소요되는 시간은 고려한 모든 대상 설계에서 1초 미만의 CPU 시간을 보여 속도면에서도 매우 우수함을 나타내었다. 따라서 본 논문에서 제안한 검색방법은 VHDL에 의한 설계에서 설계검증에 필요한 시간과 노력을 상당히 감소시킬 것으로 기대된다.
이 연구는 자동 차량위치 측정기법(Automatic Vehicle Location, AVL)을 이용해서 수집한 교통상황자료를 가지고 구간 통행시간을 산출하는 알고리즘을 개발한다. AVL기법을 이용하는 경우, 처리해야 할 자료량이 많아서 실시간에 정보를 산출하는 것이 힘들다. 따라서 이 연구는 처리해야 할 자료량을 가능한 한 줄이고 자료량이 적은 경우에도 효율적인 구간통행시간을 산출하는 알고리즘을 제시한다. 이 연구의 방법론은 크게 4가지인데, 첫째, 해석 기법, 둘째, 회귀분석, 셋째, 인공지능 및 전문가 시스템, 넷째, 통계분석이다. 이 방법론을 이용해서 세 단계 알고리즘을 개발하는데, 첫째는 실시간 분석통계 알고리즘, 둘째는 과거자료분석 알고리즘, 셋째는 자료응합 알고리즘이다. 이 알고리즘 가운데 자료융합 알고리즘 결과가 산출하고자 하는 구간 통행시간이다. 실시간 분석통계 알고리즘은 연속하는 세 개 구간의 통행 패턴을 이용해서 가운데 구간의 통행시간을 산출하는 방법을 제시한다. 또 실시간 분석통계 알고리즘으로 산출하지 못한 구간은 인접구간 상관도 정보를 이용해서 구간통행시간을 추정한다. 과거자료분석 알고리즘은 회귀분석을 이용해서 시간대별 통행시간 평균과 분산을 구하고, 이 결과를 바탕으로 인접구간 상관도 정보를 오프라인으로 구하는 알고리즘이다. 자료융합 알고리즘은 2가지 단계를 거치는데, 그것은 실시간 자료융합과 최종 자료융합이다. 실시간 자료융합은 실시간에 가까운 자료원의 실시간 분석통계 알고리즘 결과 패턴과 인접구간 상관도 정보를 이용한 구간통행시간 추정 결과를 이용해서 패턴에 따라 다른 방법으로 융합을 하는 알고리즘을 개발한다. 최종 자료융합은 실시간 자료융합 결과와 회귀분석 결과의 패턴을 이용해서 구간 통행시간을 산출한다. 이 연구를 기존 연구와 비교할 때, 세 가지 독차성이 있다. 첫째는 연속하는 세 구간 통행 패턴을 분석하였기 때문에 기존의 노드의존 방식을 탈피하였다는 점이다. 따라서 자료량이 적은 경우도 믿을만한 통행시간을 산출할 수 있다는 것이다. 둘째는 인접구간 상관도 정보를 구간통행시간 산출에 이용하였기 때문에 자료를 효율적으로 이용할 수 있다는 점이다. 셋째는 자료원 패턴을 분류하고 전문가 시스템을 이용하여 자료융합 하였기 때문에 수행속도가 빠르고, 신뢰성있는 정보를 제공한다는 점이다. 이 연구는 개발한 알고리즘 정확도를 검증하기 위해서 두 가지 검증방법을 이용하였다. 첫째는 시뮬레이션을 이용한 것이고, 둘째는 실제 주행조사 분석을 이용한 것이다. 두 가지 검증 결과는 알고리즘 정확도를 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.