• Title/Summary/Keyword: 시간 패턴

Search Result 2,943, Processing Time 0.029 seconds

Mining Generalized Temporal Patterns in Temporal Databases (시간지원 데이터베이스에서의 시간 계층을 이용한 일반화된 패턴 정보 탐사)

  • 이강태;이준욱;남광우;류근호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10b
    • /
    • pp.232-233
    • /
    • 1998
  • 이 논문에서는 시간지원 데이터베이스를 대상으로 하여 시간 간격과 시간 위상을 지닌 데이터에서의 정보를 탐사한다. 그리고 시간지원 데이터베이스에서의 시간 정보 유형을 제시하고 이에 따라 탐사되는 패턴의 유형을 분류한다. 또한 시간에 대한 계층적 구조인 시간 계층을 도입하고 이를 이용하여 각 항목의 유효시간 정보를 일반화시킨다. 시간 계층에 의한 유효시간의 일반화에 있어서 발생하는 시간 정보 유형의 변화와 패턴 유형의 변화를 살펴본다. 그리고 시간 간격 변화에 따른 패턴 정보의 발견을 예를 들어 기술한다. 이 논문에서는 시간 계층을 이용하여 시간 간격을 변화시킬 경우 발견되는 새로운 유형의 패턴 지식을 탐사하고 이를 제시한다.

Temporal Pattern Mining of Moving Objects considering Ambiguity (모호성을 고려한 이동 객체의 시간 패턴 탐사)

  • Lee, Yang-Woo;Lee, Jun-Wook;Kim, Ryong;Ryu, Geun-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.7-9
    • /
    • 2002
  • 위치 기반 서비스가 무선 인터넷의 새로운 이슈로 떠오르고 있다. 이동 객체의 패턴 마이닝은 이동 객체의 시간 패턴을 탐사함으로써 이동 객체에 위치에 기반한 유용한 서비스를 제공할 수 있게 해준다. 이동 객체는 시간에 따라 빈번하게 이동하기 때문에 패턴도 최근의 경향을 반영하기 위해 빈번하게 탐사되어야 한다. 따라서 점진적으로 시간 패턴을 탐사하는 접근법이 요구된다. 이 논문에서는 이동 객체의 시간 패턴을 탐사하는데 있어서 측정된 위치 데이터가 가질 수 있는 모호성을 제시했다. 또한 모호성을 고려한 시간 패턴 마이닝를 위해 패턴 탐사 단계에서의 모호성의 처리를 위해 모호성을 원인에 따라 세 가지 임계치를 정의하였다. 그리고 이러한 임계치를 고려한 시간 패턴 마이닝 프로시저 구조를 제시하였다.

  • PDF

Location Generalization Method for Pattern Mining of Moving Object (이동 객체의 패턴 마이닝을 위한 위치 일반화 방법)

  • Ko, Hyun;Kim, Kwang-Jong;Lee, Yon-Sik
    • Annual Conference of KIPS
    • /
    • 2006.11a
    • /
    • pp.405-408
    • /
    • 2006
  • 사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 제공하기 위해서는 방대한 이동객체의 위치 이력 데이터로부터 유용한 패턴을 추출하기 위한 시간 패턴 탐사가 필요하다. 기존의 시간 패턴 탐사 기법들은 이동 객체의 시간에 따른 공간 속성들의 변화를 충분히 고려하지 못하거나, 시공간 속성을 동시에 고려한 패턴 탐사는 가능하나 제약을 가진 공간 정보를 포함하는 패턴 탐사 문제에는 적용하기 어렵다. 따라서 이동 객체의 위치 이력 데이터들에 대한 시공간적 속성들을 동시에 고려하여 다양한 이동 패턴들 중 공간 제약을 만족하는 패턴들을 추출하기 위한 새로운 이동 패턴 탐사 기법이 요구된다. 이러한 패턴 탐사 기법의 개발을 위해서는 상세 수준의 위치 이력 데이터들을 공간 영역 정보 형태로 변환하는 위치 일반화 접근법이 필요하다. 이에 본 논문에서는 객체의 위치값과 공간 영역간의 위상 관계를 고려하여 이동 객체의 위치 속성에 대한 공간영역으로의 일반화 방법을 제안한다. 이동 객체의 상세 수준의 위치 정보에서는 의미있는 패턴을 찾기가 어렵기 때문에 데이터 전처리 과정을 통해 일반화된 데이터 집합을 형성함으로써 효율적인 이동 객체의 시간 패턴 마이닝을 유도할 수 있다.

  • PDF

Time Expression Analysis For Reminder Applications Using Speech Recognition (음성인식 기반 리마인더를 위한 시간 표현 분석 기법)

  • Park, Jaeseong;Lee, Sangwon;Jang, Jaena;Kang, Sangwoo
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.264-266
    • /
    • 2017
  • 본 연구는 리마인더 앱을 위한 효과적인 시간 표현 분석 방법을 제안한다. 시간 표현 분석을 위한 정규식 패턴을 이용하여 사용자 발화 텍스트로부터 시간 정보를 분석하고 시간 표현 유형에 따라 절대적 시간 정보로 변환한다. 제안한 방법은 정규식 패턴을 이용한 시간 표현 분석 기법으로 시스템의 유지 관리가 용이하고 정보량이 많은 패턴과의 매칭을 위해 효과적이다.

  • PDF

Development of path travel time forecasting model using wavelet transformation and RBF neural network (웨이브렛 변환과 RBF 신경망을 이용한 경로통행시간 예측모형 개발 -시내버스 노선운행시간을 중심으로-)

  • 신승원;노정현
    • Journal of Korean Society of Transportation
    • /
    • v.16 no.4
    • /
    • pp.153-166
    • /
    • 1998
  • 본 연구에서는 도시 가로망에서의 구간 통행시간을 예측하기 위하여 time-frequency 분석의 일종인 웨이브렛변환과 RBF신경망 모형을 이용한 예측모형을 개발하였다. 웨이브렛 변환을 이용한 시계열 자료 분석을 통해서 통행시간에 내재되어 있는 다양한 패턴의 특징을 추출함으로써 오전/오후의 첨두현상, 신호교차로의 현시주기 등 주기적으로 발생되는 요인들에 의해서 통행시간 시계열 자료의 패턴에 나타나는 규칙성을 분석해 내었다. 분석된 패턴정보에 대한 규명은 카오스 이론을 근간으로한 시간지연좌표를 이용하여 시계열 자료의 규칙성을 시각적으로 판별하여 예측모형 구축에 활용하도록 하였다. 또, RBF신경망을 이용하여 예측범위의 공간적/시간적 확대에 따른 모형 구축에 소요되는 시간을 최소화하도록 하였으며, 시내버스 노선의 정류장간 운행시간 예측을 통해서 기존 연구에서 제기되었던 현실세계의 단순화, 다단계 예측시 정확성 등의 문제를 해결하였다. 예측실험결과 웨이브렛 변환을 데이터의 전처리 과정에 삽입하여 링크 통행시간의 패턴정보 예측에 활용할 경우, 기존의 예측모형에 비해서 훨씬 정확한 예측이 가능한 것으로 나타났으며, RBF 신경망은 짧은 학습시간에도 불구하고 역전파 신경망보다 우수한 예측력을 갖고 있는 것으로 밝혀졌다.

  • PDF

Moving Pattern Mining Algorithm of Moving Object for Support of Optimal Path Service (최적 경로 서비스 지원을 위한 이동 객체의 이동 패턴 탐사 알고리즘)

  • Ko, Hyun;Kim, Kwang-Jong;Lee, Yon-Sik
    • Annual Conference of KIPS
    • /
    • 2006.11a
    • /
    • pp.413-416
    • /
    • 2006
  • 최근 위치 측위 기술의 발달 및 GPS 기술의 상용화로 인해 무선 통신 기기의 보급이 증가하면서 다양한 위치 기반 서비스 개발을 위한 노력이 활발히 진행되고 있다. 사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 제공하기 위해서는 방대한 이동 객체의 위치 이동 데이터로부터 의미있는 지식인 유용한 패턴을 추출하기 위한 시간 패턴 탐사가 필요하다. 기존의 시간 패턴 탐사 기법들 중 일부는 이동 객체의 시간에 따른 공간 속성들의 변화를 충분히 고려하지 못하거나 또는 시공간 속성을 동시에 고려한 패턴 탐사는 가능하나 전체 이동 패턴들 중 추출하고자 하는 패턴에 반드시 포함되어야 하는 공간 정보에 대한 제약이 없어 특정 지점들 사이의 최적 이동 경로 탐색 문제나 단위기간 동안 이동 객체가 순회해야 지점들에 대한 스케줄링 경로 예측 문제 등에 적용하기 어렵다. 따라서 본 논문에서는 이동 객체의 위치 이력 데이터들에 대한 시공간 속성들을 고려하여 다양한 이동 패턴들 중 객체의 최적 이동 경로에 해당하는 패턴을 탐색하기 위한 새로운 시간 패턴 마이닝 알고리즘을 제안한다. 제안된 알고리즘은 특정한 지점들 사이를 이동한 객체의 위치 데이터들 중 객체가 가장 빈번하게 이동한 경로를 탐색하여 최적 경로를 결정하는 알고리즘으로, 공간 추상 계층의 각 계층별 영역 내 포함여부를 고려한 위치 일반화를 수행하여 보다 효과적으로 이동 패턴을 탐색할 수 있다.

  • PDF

The Efficient Spatio-Temporal Moving Pattern Mining using Moving Sequence Tree (이동 시퀀스 트리를 이용한 효율적인 시공간 이동 패턴 탐사 기법)

  • Lee, Yon-Sik;Ko, Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.2
    • /
    • pp.237-248
    • /
    • 2009
  • Recently, based on dynamic location or mobility of moving object, many researches on pattern mining methods actively progress to extract more available patterns from various moving patterns for development of location based services. The performance of moving pattern mining depend on how analyze and process the huge set of spatio-temporal data. Some of traditional spatio-temporal pattern mining methods[1-6,8-11]have proposed to solve these problem, but they did not solve properly to reduce mining execution time and minimize required memory space. Therefore, in this paper, we propose new spatio-temporal pattern mining method which extract the sequential and periodic frequent moving patterns efficiently from the huge set of spatio-temporal moving data. The proposed method reduces mining execution time of $83%{\sim}93%$ rate on frequent moving patterns mining using the moving sequence tree which generated from historical data of moving objects based on hash tree. And also, for minimizing the required memory space, it generalize the detained historical data including spatio-temporal attributes into the real world scope of space and time using spatio-temporal concept hierarchy.

Efficient Mining of Dynamic Weighted Sequential Patterns (동적 가중치를 이용한 효율적인 순차 패턴 탐사 기법)

  • Choi, Pilsun;Kang, Donghyun;Kim, Hwan;Kim, Daein;Hwang, Buhyun
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.1365-1368
    • /
    • 2012
  • 순차 패턴 탐사 기법은 순서를 갖는 패턴들의 집합 중에 빈발하게 발생하는 패턴을 찾아내는 기법이다. 순차 패턴 탐사 분야 중에 동적 가중치 순차 패턴 탐사는 가중치가 시간에 따라 변화하는 컴퓨팅 환경에 적용하는 마이닝 기법으로 동적인 중요도 변화를 마이닝에 적용하여 다양한 환경에서 활용 가능하다. 이 논문에서는 다양한 순차 데이터에서 동적 가중치를 적용하여 순차 패턴을 탐사하는 새로운 시퀀스 데이터 마이닝 기법에 대하여 제안한다. 제안하는 기법은 시간 순서에 의한 상대적인 동적 가중치를 사용하여 탐색해야 하는 후보 패턴을 줄여줄 수 있어 빈발한 시퀀스 패턴을 빠르게 찾을 수 있다. 이 기법을 사용하면 기존 가중치를 적용하는 방식보다 메모리 사용과 처리 시간을 줄여줘 매우 효율적이다.

Pattern generation for coding error detection in VHDL behavioral-level designs (VHDL 행위-레벨 설계의 코딩 오류 검출을 위한 패턴 생성)

  • Kim, Jong Hyeon;Kim, Dong Uk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.3
    • /
    • pp.31-31
    • /
    • 2001
  • 최근 VHDL 코딩 및 합성방법에 의한 설계가 널리 사용되고 있다. 집적도가 증가함에 따라 VHDL에 의한 설계 또한 그 분량이 증가하여 많은 코딩오류가 발생하고 있으며, 이를 검색하는데 많은 시간과 노력이 소요되고 있다. 본 논문에서는 VHDL 행위-레벨 설계를 대상으로 코딩오류를 검색하는 방법을 제안하였다. 그 방법에 있어서는 검색패턴을 생성하여 오류가 없는 응답과 설계의 응답을 비교함으로써 설계오류를 찾는 방법을 택하였다. 따라서 본 논문에서는 코딩오류를 검색하기 위한 검색패턴을 생성하는 알고리듬을 제안하였다. 검색패턴 생성은 각 코드에 대해 수행하며, 할당오류와 조건오류를 구분하여 수행하였다. 패턴생성을 위해 VHDL 코드를 CDFG로 변환하여 사용하며, CDFG상의 경로를 탐색하여 패턴생성에 필요한 정보를 추출한다. 경로탐색은 오류가 발생하였다고 가정한 지점으로부터 역방향 탐색과 정방향 탐색을 수행하여 패턴을 생성한다. 제안한 알고리듬은 C-언어로 구현하였다. 펜티엄-Ⅱ 400MHz의 환경에서 여러 가지 VHDL 행위-레벨 설계를 대상으로 제안한 알고리듬을 적용하였다. 그 결과, 고려한 모든 설계의 모든 코드에 대한 검색패턴을 생성할 수 있었으며, 가정한 모든 오류를 검색할 수 있었다. 검색패턴 생성에 소요되는 시간은 고려한 모든 대상 설계에서 1초 미만의 CPU 시간을 보여 속도면에서도 매우 우수함을 나타내었다. 따라서 본 논문에서 제안한 검색방법은 VHDL에 의한 설계에서 설계검증에 필요한 시간과 노력을 상당히 감소시킬 것으로 기대된다.

A new approach to estimate the link travel time by using AVL technology (AVL을 이용한 구간통행시간 산출기법 개발)

  • 김성인;이영호;남기효
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.2
    • /
    • pp.91-103
    • /
    • 1999
  • 이 연구는 자동 차량위치 측정기법(Automatic Vehicle Location, AVL)을 이용해서 수집한 교통상황자료를 가지고 구간 통행시간을 산출하는 알고리즘을 개발한다. AVL기법을 이용하는 경우, 처리해야 할 자료량이 많아서 실시간에 정보를 산출하는 것이 힘들다. 따라서 이 연구는 처리해야 할 자료량을 가능한 한 줄이고 자료량이 적은 경우에도 효율적인 구간통행시간을 산출하는 알고리즘을 제시한다. 이 연구의 방법론은 크게 4가지인데, 첫째, 해석 기법, 둘째, 회귀분석, 셋째, 인공지능 및 전문가 시스템, 넷째, 통계분석이다. 이 방법론을 이용해서 세 단계 알고리즘을 개발하는데, 첫째는 실시간 분석통계 알고리즘, 둘째는 과거자료분석 알고리즘, 셋째는 자료응합 알고리즘이다. 이 알고리즘 가운데 자료융합 알고리즘 결과가 산출하고자 하는 구간 통행시간이다. 실시간 분석통계 알고리즘은 연속하는 세 개 구간의 통행 패턴을 이용해서 가운데 구간의 통행시간을 산출하는 방법을 제시한다. 또 실시간 분석통계 알고리즘으로 산출하지 못한 구간은 인접구간 상관도 정보를 이용해서 구간통행시간을 추정한다. 과거자료분석 알고리즘은 회귀분석을 이용해서 시간대별 통행시간 평균과 분산을 구하고, 이 결과를 바탕으로 인접구간 상관도 정보를 오프라인으로 구하는 알고리즘이다. 자료융합 알고리즘은 2가지 단계를 거치는데, 그것은 실시간 자료융합과 최종 자료융합이다. 실시간 자료융합은 실시간에 가까운 자료원의 실시간 분석통계 알고리즘 결과 패턴과 인접구간 상관도 정보를 이용한 구간통행시간 추정 결과를 이용해서 패턴에 따라 다른 방법으로 융합을 하는 알고리즘을 개발한다. 최종 자료융합은 실시간 자료융합 결과와 회귀분석 결과의 패턴을 이용해서 구간 통행시간을 산출한다. 이 연구를 기존 연구와 비교할 때, 세 가지 독차성이 있다. 첫째는 연속하는 세 구간 통행 패턴을 분석하였기 때문에 기존의 노드의존 방식을 탈피하였다는 점이다. 따라서 자료량이 적은 경우도 믿을만한 통행시간을 산출할 수 있다는 것이다. 둘째는 인접구간 상관도 정보를 구간통행시간 산출에 이용하였기 때문에 자료를 효율적으로 이용할 수 있다는 점이다. 셋째는 자료원 패턴을 분류하고 전문가 시스템을 이용하여 자료융합 하였기 때문에 수행속도가 빠르고, 신뢰성있는 정보를 제공한다는 점이다. 이 연구는 개발한 알고리즘 정확도를 검증하기 위해서 두 가지 검증방법을 이용하였다. 첫째는 시뮬레이션을 이용한 것이고, 둘째는 실제 주행조사 분석을 이용한 것이다. 두 가지 검증 결과는 알고리즘 정확도를 보여준다.

  • PDF