• Title/Summary/Keyword: 시간적분

Search Result 713, Processing Time 0.034 seconds

Slope Stability Analysis of Unsaturated Soil Slopes Due to Rainfall Infiltration (강우침투에 따른 불포화 토사사면의 안정해석)

  • 조성은;이승래
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.51-64
    • /
    • 2000
  • This paper presents a procedure of calculating a safety factor of the unsaturated slope suffering from the rainfall infiltration. The process of infiltration into a slope due to rainfall and its effect on the behavior of the soil slope are examined by using a two dimensional finite element flow-deformation coupled analysis. A factor of safety is calculated at various elapsed times after the commencement of rainfall as in the following procedure. First, stresses are estimated at each Gaussian point from the coupled finite element analysis. Then, the global stress smoothing method is applied to get a continuous stress field. Based on this stress field, a factor of safety is calculated for a specified slip surface by a stress integration scheme. Then, a search strategy is used to find out a critical slip surface which is associated with the minimum factor of safety. Some numerical examples are analyzed in order to study the effect of hydraulic conductivity on the slope stability during rain-induced infiltration. According to the results, local failure zone can be formed near the slope surface due to inhomogeneous distribution of hydraulic conductivity If the failure zone is once formed, then the region extends until a large amount of slide activates. Therefore the local failure can be neglected no longer in the stability analysis.

  • PDF

Accurate Measurement of the Thermal Conductivity of Electronic Materials Using the Flash Method (섬광법을 이용한 전자재료의 열전도율 정밀측정)

  • Kim, Seog-Kwang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.9-9
    • /
    • 2008
  • 일반적으로 섬광법으로 열전도율을 구하기 위해서는 섬광법으로 열확산계수를 측정하고, 시차주사열량계(Differential Scanning Calorimetry, DSC)로 비열측정을 하며 아르키메데스의 원리를 이용한 용적밀도를 구하여 이들 각각의 값을 사용하여 열전도율을 얻는다. 따라서 열전도율을 정밀하게 측정하기 위해서는 이 세 가지 물성치를 측정할 때 수반되는 오차요인을 종합적으로 검토하여 개선하는 것이 매우 중요하다. 섬광법으로 열확산계수를 측정할 때 시료의 전면에 조사되는 빛의 흡수율을 향상시키고 배면에서의 온도상승의 감지를 증대할 목적으로 시료 양면에 흑연코팅을 하게 된다. 이때 코팅된 흑연이 시료에 부가적으로 열저항을 증가시켜서 열확산계수를 측정하는데 가장 큰 오차요인이 되고 있다. 한편 비열은 대부분 DSC로 측정하는데, 시료와 용기의 열접촉 정도에 따라 큰 오차요인이 되기도 한다. 본 연구에서는 열확산계수를 정밀하게 측정하기 위해서 시료에 부가적인 열저항으로 작용하는 흑연코팅의 두께와 시료배면에서의 온도상승곡선 간의 상관관계를 실험식으로 도출하였으며 이방법은 열확산계수를 정밀하게 측정하는데 매우 유효한 방법임이 입증되었다. 또한 DSC의 접촉에서의 문제점을 해결하기 위해서 시료배면에서의 무차원 시간축(t/$t_{max}$)을 도입하였으며. 무차원 시간축에 따른 온도상승 곡선에서 표준시료와 측정시료의 half time($t_{1/2}$)의 0.5 배와 1.5배 사이 구간을 적분한 뒤 비교하여 열량계산으로부터 비열을 구하는 방법을 새롭게 개발하였으며 기존의 DSC에 비하여 정밀도를 향상시킬 수 있었다. 결론적으로 새롭게 제안된 측정기법들은 열확산계수 및 비열 혹정 시의 근본적인 오차요인을 혁신적으로 해결함으로써 정밀하고 신뢰성 있는 열전도율을 측정할 수 있음을 입증할 수 있었다.

  • PDF

Fast Pedestrian Detection Using Estimation of Feature Information Based on Integral Image (적분영상 기반 특징 정보 예측을 통한 고속 보행자 검출)

  • Kim, Jae-Do;Han, Young-Joon
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.469-477
    • /
    • 2013
  • This paper enhances the speed of a pedestrian detection using an estimation of feature information based on integral image. Pedestrian model or input image should be resized to the size of various pedestrians. In case that the size of pedestrian model would be changed, pedestrian models with respect to the size of pedestrians should be required. Reducing the size of pedestrian model, however, deteriorates the quality of the model information. Since various features according to the size of pedestrian models should be extracted, repetitive feature extractions spend the most time in overall process of pedestrian detection. In order to enhance the processing time of feature extraction, this paper proposes the fast extraction of pedestrian features based on the estimate of integral image. The efficiency of the proposed method is evaluated by comparative experiments with the Channel Feature and Adaboost training using INRIA person dataset.

A Geometrically Nonlinear Dynamic Analysis of Shallow Circular Arches Using Total Lagrangian Formulation (Total Lagrangian 문제형성에 의한 낮은 원호아치의 동적 비선형거동 해석)

  • Kim, Yun Tae;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.39-48
    • /
    • 1990
  • For shallow circular arches with large dynamic loading, use of linear analysis is no longer considered as practical and accurate. In this study, a method is presented for the dynamic analysis of the shallow circular arches in which geometric nonlinearity is dominant. A program is developed for analysis of the nonlinear dynamic behavior and for evaluation of the critical buckling loads of the shallow circular arches. Geometric nonlinearity is modeled using Lagrangian description of the motion and finite element analysis procedure is used to solve the dynamic equations of motion in which Newmark method is adopted as a time marching scheme. A shallow circular arch subject to radial step load is analyzed and the results are compared with those from other researches to verify the developed program. The critical buckling loads of shallow arches are evaluated using the non-dimensional parameter. Also, the results are compared with those from linear analysis.

  • PDF

Numerical Analysis of Surface Thermal Jets by Three-Dimensional Numerical Model (3차원(次元) 수치모형(數値模型)에 의한 표면온배수(表面溫排水) 확산(擴散)의 수치해석(數値解析))

  • Jung, Tae Sung;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1385-1394
    • /
    • 1994
  • A three-dimensional numerical model of surface buoyant jets with variable density was established. The model uses fully nonlinear, time-dependent, three-dimensional, ${\sigma}$-transformed equations of motion and equation of heat transport. A semi-implicit numerical scheme in time has been adopted for computational efficiency. The model was applied for thermal jets discharging into a stagnant water and the simulated results were compared with a hydraulic experimental data set showing good agreement. Comparative studies of exchange coefficients and stability functions indicated that spatial variation of exchange coefficients should be considered and the existing stability functions should be modified to simulate surface buoyant jets accurately.

  • PDF

Analysis of Spray Combustion for the Performance Prediction of Liquid Rocket Combustor (3차원 분무연소장 해석에 의한 액체추진기관 연소실 성능예측에 대한 연구)

  • 황용석;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.31-39
    • /
    • 1999
  • In this paper, numerical experiment is attempted to analyze and compare the combustion efficiency of the burning sprays due to OFO, FOF triplet / FOOF split doublet injectors. Preconditioned Wavier-Stokes equation system with low Reynolds number $\kappa$-$\varepsilon$ model for turbulence closure, is LU-SGS time-integrated. Spray processes are modeled by DSF analysis with experimentally determined injection characteristics. n-heptane/air global reaction model approximates the combustion for simplicity, and the influence of turbulence on the chemical reaction is included using eddy dissipation model. The results showed the FOF triplet injector of highest combustion efficiency, whereas the OFO type of poet performance. It was also observed that the droplet mean diameter and the average gas temperature due to the mixing efficiency, are the representative parameters for the performance design of combustion.

  • PDF

Nonlinear Dynamic Analysis of Space Steel Frames (공간 강뼈대 구조물의 비선헝 동적 해석)

  • Kim Seung-Eock;Cuong Ngo-Huu;Lee Dong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.395-404
    • /
    • 2005
  • This paper presents a reliable numerical procedure for nonlinear time-history analysis of space steel frames subjected to dynamic loads. Geometric nonlinearities of member (P-$\delta$) and frame (P-$\Delta$) are taken into account by the use of stability functions in framed stiffness matrix formulation. The gradual yielding along the member length and over the cross section is included by using a tangent modulus concept and a softening plastic hinge model based on the New-Orbison yield surface. A computer program utilizing the average acceleration method for the integration scheme is developed to numerically solve the equation of motion of framed structure formulated in an incremental form. The results of several numerical examples are compared with those derived from using beam element model of ABAQUS program to illustrate the accuracy and the computational efficiency of the proposed procedure.

Computation of Turbulent Flow around a Ship Model with Free-Surface (자유표면을 포함한 선체주위 난류유동 해석)

  • Jung-Joong Kim;Hyoung-Tae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The computations of the turbulent flow around the ship models with the free-surface effects were carried out. Incompressible Reynolds-Averaged Navier-Stokes equations were solved by using an explicit finite-difference method with the nonstaggered grid system. The method employed second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration. For the turbulence closure, a modified Baldwin-Lomax model was exploited. The location of the free surface was determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and a free-surface conforming grid was generated at each time step so that one of the grid boundary surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition was applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method developed in the present study, the computations were carried out for beth Wigley and Series 60 $C_B=0.6$ ship model and the computational results showed good agreements with the experimental data.

  • PDF

Helicopter BVI Noise Prediction Using Acoustic Analogy and High Resolution Airloads of Time Marching Free Wake Method (자유후류기법에 의한 고해상도 공기력과 음향상사법을 이용한 헬리콥터 로터 블레이드-와류 상호작용 소음 예측)

  • Chung, K.;Lee, D.J.;Hwang, C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.291-297
    • /
    • 2006
  • The BVI(blade vortex interaction) noise Prediction has been one of the most challenging acoustic analyses in helicopter aeromechanical Phenomenon. It is well known high resolution airloads data with accurate tip vortex positions are necessary for the accurate prediction of this phenomenon. The truly unsteady time-marching free-wake method, which is able to capture the tip vortices instability in hover and axial flights, is expanded with the rotor flapping motion and trim routine to predict unsteady airloads in forward and descent flights. And Farassat formulation 1-A based on the FW-H equation is applied for the noise prediction considering the blade flapping motion. Main objective of this study is to validate the newly developed prediction code. To achieve the objective, the descent flight condition of AH-1 OLS(operational loads survey) configuration is analyzed using present code. The predicted sectional thrust distribution and sectional airloads time histories show the present scheme is able to capture well the unsteady airloads caused by a parallel BVI. Finally, the predicted noise data, observed in two different positions where are 3.44 times of rotor radius far from the hub center, are quite reasonable agreements with the experimental data compared to the other analysis results.

A Study of High Precision Position Estimator Using GPS/INS Sensor Fusion (GPS/INS센서 융합을 이용한 고 정밀 위치 추정에 관한 연구)

  • Lee, Jeongwhan;Kim, Hansil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.159-166
    • /
    • 2012
  • There are several ways such as GPS(Global Positioning System) and INS (Inertial Navigation System) to track the location of moving vehicle. The GPS has the advantages of having non-accumulative error even if it brings about errors. In order to obtain the position information, we need to receive at least 3 satellites information. But, the weak point is that GPS is not useful when the 혠 signal is weak or it is in the incommunicable region such as tunnel. In the case of INS, the information of the position and posture of mobile with several Hz~several hundreds Hz data speed is recorded for velocity, direction. INS shows a very precise navigational performance for a short period, but it has the disadvantage of increasing velocity components because of the accumulated error during integration over time. In this paper, sensor fusion algorithm is applied to both of INS and GPS for the position information to overcome the drawbacks. The proposed system gets an accurate position information from experiment using SVD in a non-accessible GPS terrain.