• Title/Summary/Keyword: 시간적분

Search Result 713, Processing Time 0.023 seconds

A Numerical Model of Large Scale Grid for Two-Dimensional Wake behind Bodies (저항물체 배후의 이차원 후류에 관한 대격자 수치모형)

  • 박일흠;이종섭;이문옥
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.2
    • /
    • pp.83-92
    • /
    • 1998
  • To evaluate the hydraulic resistance behind bodies in a large scale grid numerical model, a drag stress term which is formulated by the drag force is introduced in the depth-integrated Reynolds equations. And also, the applicability and problems of this model are discussed through various numerical experiments where the analytical solutions exist. In the case of a single body, the error range of velocity difference between analytical and numerical solutions is within $\pm$10% and the wake width behind the body shows a good agreement with the analytical solution. When the drag coefficient and the eddy viscosity are precisely decided, the numerical solutions behind a row of bodies will be efficiently used in real situations.

  • PDF

Aeroelastic Analysis of Deployable Missile Control Fin with Bilinear Nonlinearity (이선형 비선형성을 포함하는 접는 미사일 조종날개의 공탄성 해석)

  • Bae, Jae-Sung;Shin, Won-Ho;Lee, In;Shin, Young-Sug
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.29-35
    • /
    • 2002
  • Aeroelastic characteristics of a deployable missile control fin have been investigated. A deployable missile control fin is modeled by a 2-dimensional typical section. Supersonic Doublet-Point method is used for the computation of supersonic unsteady aerodynamic forces and Karpel's Minimum-State approximation is used for the aerodynamic approximation. Root-locus method and time-integration method are used for the linear and nonlinear flutter analyses. For the nonlinear flutter analysis the deployable hinge is represented by a asymmetric bilinear spring and is linearized by using the describing function method. From the flutter analyses, the effects of nonlinear parameters on the aeroelastic characteristics are investigated.

Numerical Analysis and Control of Open Cavity Flow (열린 공동 유동의 수치적 모사 및 Jet Blowing 을 이용한 제어)

  • Chang, Kyung-Sik;Park, Seung-O;Choi, Hun-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.101-108
    • /
    • 2002
  • A numerical simulation of an incompressible cavity flow is conducted. Two dimensional Navier-Stokes equations are integrated using staggered grid and a finite volume method with C-QUICK scheme for spatial derivatives and fully implicit scheme for the time derivatives. SIMPLE-C algorithm is employed to solve the pressure field. Computational results show that the third eddy is generated in the shear layer mode but not in the steady mode. This signifies that the third eddy plays an important role in cavity flow stability. As a means to control the flow, jet blowing is applied to a position below the cavity upstream edge. Effects of flow control parameters on the stability such as the frequency, the phase, and the velocity magnitude are reported.

A Study on the efficient control of an elastic manipulator moving in a vertical plane (수직면에서 작동하는 탄성 매니퓰레이터의 효율적인 제어에 관한 연구)

  • 강준원;이중섭;권혁조;오재윤;정재욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.318-322
    • /
    • 1996
  • This paper presents a technique to control a robot which has a flexible manipulator moving in a vertical plane. The flexible manipulator is modeled as an Euler-Bernoulli beam. Elastic deformation is represented using the assumed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. A control algorithm is developed using a simple PID control technique. The proportional, integral and derivative control gains are determined based on the dominant pole placement method and tuned to show no overshoot and having a short settling time. The effectiveness of the developed control scheme is showed experimentally. In the position control experiment, three different end masses are used. The experimental results shows little overshoot, no steady state error, and less than 2.5 second settling time in case of having an end mass which is equivalent to 45% of the total system weight. Also the residual vibration of the end point is effectively controlled.

  • PDF

Temperature Control Improvement of Pressure Heating Roller for Flexible Flat Cable Production (Flexible Flat Cable 생산성 향상을 위한 가압용 히팅롤러의 온도제어개선)

  • Kim Jae Hak;Lee Ho Jung;Chun Keyoung Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.155-163
    • /
    • 2005
  • Pressure heating rollers with temperature control were mounted to a flat cable laminating machine (FCLM). Pressure heating rollers should be heated up to the setting temperature $(175^{\circ}C)$ and kept on to producing good quality flexible flat cables (FFC). Existing Pressure heating rollers took more than 70minutes to the setting temperature and did not keep on the setting temperature in production. Temperature controller, electric power controller, material and diameter of rollers and heat capacities were changed to improve the temperature control of the pressure heat rollers for better production of the FFC. Thus, the reaching time to the setting temperature (RT), temperature stability time (TST) and temperature hunting (TH) were measured and compared with the existing pressure rollers case. The RT of A roller was shortened by 50minutes, and B roller was shortened by 15minutes. The TST of A roller was shortened by 13minutes, and B roller was shortened by 15minutes. The THs of both A and B rollers were settled up to ${\pm}5^{\circ}C$. Finally, the productivity of the FCLM and the quality of the FFC were increased.

A Study on the Lateral Vibretion of a Railway Vehicle Utilizing Statistical Linearization Technique (확률적 선형화를 이용한 철도차량의 횡방향 진동에 관한 연구)

  • 임종순;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.742-750
    • /
    • 1986
  • The lateral vibrating motion of a railway vehicle over a certain critical speed is a well known problem in the field of train dynamics. It is known that the train equations of motion are strongly coupled and highly nonlinear with the motion and causing that it is very difficult to solve the equations simultaneously. In this paper, a 8 degree of feedom model of a railway vehicle was suggested to solve the rail vehicle lateral motion. In stead of solving the nonlinear equation simultaneously, statistical linearization technique was adopted to solve those equations. The analysis results from the statistical linearization method were directly compared with those from direct nonlinear equations and found that the linearization technique can be very effective and economical for railroad vehicle analysis. By the way, it was found that the analysis results can analytically explain the intermittent hunting phenomena which has been frequently observed in experiments.

Flow-induced Vibration Analysis for Cascades with Stator-rotor Interaction and Viscosity Effect (스테이터-로터 상호간섭 및 점성효과를 고려한 케스케이드의 유체유발 진동해석)

  • Oh, Se-Won;Park, Oung;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1082-1089
    • /
    • 2006
  • In this study, advanced computational analysis system has been developed in order to investigate flow-induced vibration(FIV) phenomenon for general stator-rotor cascade configurations. Relative movement of the rotor with respect to stator is reflected by modeling Independent two computational domains. Fluid domains are modeled using the unstructured grid system with dynamic moving and local deforming methods. Unsteady, Reynolds-averaged Wavier-stokes equations with one equation Spalart-Allmaras and two-equation SST ${\kappa}-{\varepsilon}$ turbulence models are solved for unsteady flow problems and also relative moving and vibration effects of the rotor cascade are fully considered. A coupled implicit time marching scheme based on the Newmark integration method is used for computing the governing equations of fluid-structure interaction problems. Detailed vibration responses for different flow conditions are presented and then vibration characteristics are physically investigated in the time domain as computational virtual tests.

Flow-Induced Vibration of Transonic Turbine Cascades Considering Viscosity and Shock Wave Effects (점성 및 충격파 효과를 고려한 천음속 터빈 케스케이드의 유체유발 진동해석)

  • Oh, Se-Won;Kim, Dong-Hyun;Park, Oung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.793-802
    • /
    • 2006
  • In this study, a fluid/structure coupled analysis system for simulating complex flow-induced vibration (FIV) phenomenon of cascades has been developed. The flow is modeled using Euler and Wavier-Stokes equations with different turbulent models. The fluid domains are modeled using the unstructured grid system with dynamic deformations due to the motion of structural boundary. The Spalart-Allmaras (S-A) and the SST ${\kappa}-{\omega}$ turbulent models are used to predict the transonic turbulent flows. A fully implicit time marching scheme based on the Newmark direct integration method is used in order to solve the coupled governing equations for viscous flow-induced vibration phenomena. For the purpose of validation for the developed FIV analysis system, comparison results for computational analyses of steady and unsteady aerodynamics and flutter analyses are presented in the transonic flow region. In addition, flow-induced vibration analyses for the isolated cascade and multi-blades cascade models have been conducted to show the physical fluid-structure interaction effects in the time domain.

  • PDF

On the Joint Distribution of Wave Height, Period and Wave Direction in Random Sea Waves (다방향불규칙파랑장에서의 파고, 주기, 파향의 종합확률분포 유도과정 및 적합성)

  • 권정곤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.75-82
    • /
    • 1990
  • A Wave transformation including wave breaking in shallow water region is a non-linear and discontinuous Phenomenon. Therefore, a so-called individual wave analysis (or a wave by wave analysis) rather than spectral approach seems to be adequate to investigate the wave transformation in such regions. In this study, a theoretical joint distribution of wave height, period and wave direction of zero-down crossing waves, which is required in the individual wave analysis in the shallow water region, is derived based on the hypothesis that sea surface is a Gaussian stochastic process and that a band-width of energy spectra is sufficiently narrow. The derived i oint distribution is found to be an effective measure to investigate characteristics of three-dimensional random wave field in shallow water through field measurements.

  • PDF

Vibration-Robust Adaptive Attitude Reference System Using Sequential Measurement Noise Covariance (진동환경에 강인한 순차적 측정 오차 공분산값을 이용한 적응 자세 결정)

  • Kim, Jongmyeong;Leeghim, Henzeh
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.308-315
    • /
    • 2016
  • A new technique for Attitude & Heading Reference System (AHRS) by using sequential measurement noise covariance (SMNC) is addressed in a vibration environments in this paper. In particular, a low-cost inertial measurement unit in general diverges in the acceleration phase or vibrating environments due to inherent properties of gravity and acceleration. In this paper, by considering current and prior measurements to estimate actual attitudes and headings in a local frame, the proposed technique overcomes these problems efficiently. Finally, the performance of the suggested approach is verified by numerical simulations.