• Title/Summary/Keyword: 시간이력 해석

Search Result 427, Processing Time 0.027 seconds

A Four-Node Assumed Strain Plate Element for Explicit Dynamic Transient Analysis (명시적인 동적 시간이력해석을 한 사절점 가변형도 평판요소)

  • 이상진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.349-359
    • /
    • 2001
  • An enhanced four-node plate element, which has been developed for explicit dynamic analysis of plate, is described in this paper. Reissner-Mind1in(RM) assumptions are adopted to consider transverse shear deformation effects in the present plate element. RM plate element produces a shear locking phenomena in thin plate so that the substitute natural strains based on assumed strain method are explicitly derived. The present plate element is applied into the explicit transient algorithm and the mass matrix of plate is formulated by using special lumping method proposed by Hinton et al. The performance of the element is verified with numerical examples.

  • PDF

Evaluation of Nonlinear Response for Moment Resisting Reinforced Concrete Frames Based on Equivalent SDOF System (등가 1 자유도계에 의한 철근콘크리트 모멘트 골조구조의 비선형 지진응답 평가법의 검토)

  • 송호산;전대한
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • To evaluate the seismic performance of multistory building structures use an equivalent SDOF model to represent the resistance of the structure to deformation as it respond in its predominant mode. This paper presents a method of converting a MDOF system into an equivalent SDOF model. The principal objective of this investigation is to evaluate appropriateness of converting method through perform nonlinear time history analysis of a multistory building structures and an equivalent SDOF model. The hysteresis rules to be used an equivalent SDOF model is obtained from the pushover analysis. Comparing the peak inelastic response of a moment resisting reinforced concrete frames and an equivalent SDOF model, the adequacy and the validity of the converting method is verified. The conclusion of this study is following; A method of converting a MDOF system into an equivalent SDOF model through the nonlinear time history response analysis is valid. The representative lateral displacement of a moment resisting reinforced concrete frames is close to the height of the first modal participation vector \ulcorner$_1{\beta}$${_1{\mu}}=1$. It can be found that the hysteresis rule of an equivalent SDOF model have influence on the time history response. Therefore, it necessary for selecting hysteresis rules to consider hysteresis characteristics of a moment resisting reinforced concrete frames.

Study on the Variation of Energy Dissipation Factor of Reinforced Concrete Beam under Cyclic Loading (반복하중을 받는 철근콘크리트 보의 에너지소산계수 변화 특성 고찰)

  • Suk-Hyeong Yoo;Dae-Young Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.86-93
    • /
    • 2023
  • As the hysteretic behavior of reinforced concrete members under cyclic loading progresses, the energy dissipation ability decreases due to a decrease in stiffness and strength and pinching effects. However, the guideline "Nonlinear Analysis Model for Performance-Based Seismic Design of Reinforced Concrete Building Structures, 2021" requires calculating a single energy dissipation factor for each member and all histeric step, so the decrease in energy dissipation capacity according to histeric step cannot be considered. It is judged that Therefore, in this study, the energy dissipation factor according to the histeric step was examined by comparing the existing experimental results and the nonlinear time history analysis results for a general beam under cyclic loading. The energy dissipation factor was calculated as the ratio of the energy dissipation amount of the actual specimen to the energy dissipation amount of the idealized elastoplastic behavior obtained as a result of nonlinear time history analysis. In the existing experiment results, the energy dissipation factor was derived by calculating one cycle for each histeric step, and the energy dissipation factor was derived based on the nonlinear modeling process in the guidelines. In the existing experimental study, the energy dissipation factor was calculated by setting each histeric step (Y-L-R), and the energy dissipation factor was found to be 0.36 in the Y-L step and 0.28 in the L-R step, and the energy dissipation factor in the guideline was found to be 0.31. This shows that the energy dissipation factor calculation formula in the guidelines does not indicate a decrease in the energy dissipation capacity of reinforced concrete members.

Calculation of Optimum Damping Ratio of Viscous Dampers Using Capacity Spectrum Method (능력스펙트럼법을 이용한 점성 감쇠기의 적정 감쇠비 산정)

  • 김진구;최현훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • 에너지 소산장치가 설치된 건무의 비선형 시간이력해석은 복잡하고 많은 시간이 소모된다. 본 연구에서는 비선형 정적해석법인 능력 스펙트럼을 이용하여 구조물의 주어긴 거동 한계를 만족할 수 있는 감쇠기의 양을 산정하는 방법에 관하여 연구하였다. 먼저 능력스펙트럼법을 이용하여 건물의 비선형 정적응답을 구하고 건물의 응답과 목표변위의 차이를 이용하여 유효감쇠비를 구하고 이러한 유효 감쇠비를 이용하여 필용한 점성 감쇠기의 양을 구하였다. 본 연구에서는 단자 유도계에서 건물의 주기, 요구되는 탄성강도에 대한 항복강도의 비, 항복 후 강성비 등을 변수로 하여 연구를 수행하였다. 제안된 방법에 따라 설계된 점성 감쇠기를 설치한 예제 구조물의 시간이력 해석에 의한 최대 응답은 설계의 초기단계에서 사용한 목표변위와 잘 일치하였다.

  • PDF

Vibration Serviceability Assessment of High-performence Steel Bridge (고성능강 적용 교량의 진동사용성 평가)

  • Kim, Tae-Min;Kim, Dong-Hwan;Kim, Moon-Kyum
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.710-713
    • /
    • 2011
  • 본 논문에서는 교량의 주부재에 교량용 고성능강을 적용하여 설계해 본 후, 이러한 적용이 교량의 진동사용성에 어떠한 영향을 미치는지 그 영향을 분석해 보고자 한다. 최근들어 교량상의 구조적인 결함이 없더라도 진동에 의해 교량을 통행하는 운전자나 보행자에게 불안감을 주는 경우가 빈번히 발생하기 때문에 진동사용성이란 문제는 보다 부각되고 있다. 특히 고성능강이 개발되고 이를 교량에 적용하게 되면 허용응력의 증가로 이어져 거더의 형고감소를 가능하게 한다. 그러나 이러한 형고의 감소는 교량의 휨강성을 저하시켜 사용성의 악화를 초래할 것이란 예측이 있었다. 따라서 본 연구는 차량-교량의 상호작용에 의해 발생하는 진동영향의 분석을 위해 유한요소해석 프로그램인 Abaqus 6.10을 이용해 수치해석을 수행하였고 이때의 진동영향을 평가했다. 차량-교량 상호작용의 해석을 위해 ASSHTO 기준의 HS 20-44 차량을 해석 대상교량 위로 주행하도록 하였다. 해석대상교량은 인장강도가 각각 600MPa와 800MPa인 교량용 고성능강재(HSB, High-Performance Steel for Bridge)를 적용하여 주거더를 설계한 강플레이트 거더교를 대상으로 삼았다. 차량이 교량을 통과하면서 발생하는 교량의 경간 중앙부에서 발생하는 수직진동의 시간이력을 분석하여 진동평가의 기준으로 삼았다. 해석결과 HSB600과 HSB800으로 각각 설계된 교량은 가속도이력에서는 큰 차이가 없었으나 변위이력에서는 HSB800적용 교량이 진동사용성 측면에서 매우 불리한 거동을 보였다. 따라서 고성능강 적용에 따른 교량의 진동사용성을 평가하기 위해서는 변위를 기준으로한 평가가 이루어져야하며, 변위의 진동을 제어하기 위한 방안이 모색되어야 할 것으로 판단된다.

  • PDF

Earthquake Response Analysis of Bridges Using Fiber Element Method (섬유요소를 이용한 교량의 비선형 지진응답해석)

  • Byun, Soon-Joo;Im, Jung-Soon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.29-35
    • /
    • 2006
  • Fiber element method in earthquake response analysis of bridges is used to represents a realistic flexural deformation according to nonlinear behavior of beam-column section. Nonlinear pseudo-static analysis of two column bent using fiber element is accomplished and failure mechanism of the plastic hinge region is studied. Load-displacement curve obtained by nonlinear pseudo-static analysis can be applicable to earthquake response analysis by capacity spectrum method. The nonlinear time history analysis of a full bridge model using fiber element experienced by the ground motion corresponding to the target response spectrum is accomplished. The result of time history analysis is similar to that of capacity spectrum method.

Nonlinear Seismic Analysis of Steel Buildings Considering the Stiffnesses of the Foundation-Soil System (기초지반강성을 고려한 철골 건축구조물의 비선형 지진해석)

  • Oh, Yeong Hui;Kim, Yong Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.173-180
    • /
    • 2006
  • The seismic responses of a building are affected by the base soil conditions. In this study, linear time-history seismic analysis and nonlinear pushover static seismic analysis were performed to estimate the base shear forces of 3-, 5-, and 7-story steel buildings, considering the rigid and soft soil conditions. Foundation soil stiffness, based on the equivalent static stiffness formula, is used for the damper, one of the Link elements in SAP 2000. The base shear forces of the steel buildings, estimated through time-history analysis using the general-purpose structural-analysis program of SAP 2000, were compared with those calculated using the domestic seismic design code, the UBC-97 design response spectrum. and pushover static nonlinear analysis. The steel buildings designed for gravity and wind loads showed elastic responses with a moderate earthquake of 0.11 g, while the elastic soft-soil layer increased the displacement and the base shear force of the buildings due to soil-structure interaction and soil amplification. Therefore, considering the characteristics of the soft-soil layer, it is more reasonable to perform an elastic seismic analysis of a building's structure during weak or moderate earthquakes.

Evaluation of the Inelastic Seismic Response of Curved Bridges by Capacity Spectrum Method using Equivalent Damping (등가감쇠비를 이용한 역량스펙트럼법에 의한 곡선교의 비탄성지진응답 평가)

  • Joe, Yang-Hee;Cho, Sung-Gook;Ma, Jeong-Suck
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.17-26
    • /
    • 2009
  • The capacity spectrum method (CSM), which is known to be an approximate technique for assessing the seismic capacity of an existing structure, was originally proposed for simple building structures that could be modeled as single-degree-of-freedom (SDOF) systems. More recently, however, CSM has increasingly been adopted for assessing most bridge structures, as it has many practical advantages. Some studies on this topic are now being performed, and a few results of these have been presented as ground-breaking research. However, studies have until now been limited to symmetrical straight bridges only. This study evaluates the practical applicability of CSM to the evaluation of irregular curved bridges. For this purpose, the seismic capacities of 3-span prestressed concrete bridges with different subtended angles subjected to some recorded earthquakes are compared with a more refined approach based on nonlinear time history analysis. The results of the study show that when used for curved bridges, CSM induces higher inelastic displacement responses than the actual values, and that the gap between the two becomes larger as the subtended angle increases.

Seismic Performance Enhancement of Residential Flat Plate Structure by Using Base Isolation Devices. (면진장치를 사용한 주거용 무량판구조의 내진성능 향상)

  • Lee, Hyun Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.185-191
    • /
    • 2007
  • For the seismic performance enhancement of residential flat plate structure and for the selection of earthquake records, the possibility of base isolation is evaluated and the time history results are reviewed. By evaluating a base isolated stiffness, a target period, and an envelope curve analysis, seismic performance of structure, which has strong rotational mode, is evaluated. For the propriety evaluation of earthquake records usage and scaling method, time history analysis is done with variables such as DBE(design base earthquake) level, MCE(maximum considerable earthquake) level, and 1.4DBE level. From the analysis results, following conclusions can be made; the earthquake records, which are used in base isolation analysis, should be selected by similar soil type which the structure is considered, and should be intensity scaled in a range of mean ${\pm}$ standard deviation of code based design response spectrum.