• 제목/요약/키워드: 시간이력 지진응답해석

Search Result 153, Processing Time 0.024 seconds

Seismic Design and Analysis of Seismically Isolated KALIMER Reactor Structures (면진된 KALIMER 원자로 구조물의 내진설계 및 지진해석)

  • 이형연
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.75-92
    • /
    • 1999
  • In this paper, the seismic analysis model for seismically isolated KALIMER reactor structures is developed and the modal analysis and the seismic time history analysis are carried out for seismic isolation and non-isolation cases. To check the seismic stress limit according to the ASME Code, the equivalent seismic stress analyses are preformed using the 3-D finite element model. From the seismic stress analysis, the seismic margins are calculated for structural members. The limit of seismic load is defined to show that the maximum input acceleration ensures the structural safety for seismic load. In comparison of seismic responses between seismic isolation and non-isolation cases, the seismic isolation design gives significantly reduced acceleration responses and relative displacements between structures. The seismic margin of KALIMER reactor structure is high enough to produce the limit seismic load 0.8g.

  • PDF

Scaling Method of Earthquake Records for the Seismic Analysis of Tall Buildings (초고층 구조물의 지진해석을 위한 지진기록의 조정방법)

  • Kim, Tae-Ho;Park, Ji-Hyeong;Kim, Ook-Jong;Lee, Do-Bum;Ko, Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.11-21
    • /
    • 2008
  • In recent years, time history analysis has been the method generally used for the seismic analysis of tall buildings with damping devices. When T is the natural period of the first vibration mode of the structure, the sum of the spectral acceleration of the earthquake ground motion is usually adjusted to that of the design response spectrum in the period ranging from 0.2T to 1.5T to meet the requirements of design code. However, when the ground motion is scaled according to the design code, the differences in the responses obtained by response spectrum analysis (RSA) and time history analysis (THA) of the structures increase as the natural period of the structure becomes longer. When time history analysis is performed by using ground accelerations that are scaled according to the design code, base shear is similar to that obtained from RSA, but other responses, such as displacements, drifts and member forces, are underestimated compared to RSA. If these results are adjusted by multiplying with the scale-up factor, the scaled responses become much smaller. Therefore, a scaling method of ground motions corresponding with the design code is proposed in this study, as a way of assisting structural engineers in generating artificial ground motions.

Seismic Response of Structures with Buckling-Restrained Braces (좌굴방지 가새가 설치된 건물의 지진응답)

  • 김진구;최현훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.197-207
    • /
    • 2002
  • Energy dissipation capacity and earthquake responses of steel structures installed with unbonded braces(UB) were investigated. Parametric studies were performed for a single-degree-of-freedom structure under harmonic loads, and optimum yield strength of unbonded braces were derived. Nonlinear dynamic time history analyses were carried out to investigate the seismic response of multi-story model structures with UB having various size and strength. Various techniques were applied to determine proper story-wise distribution of UB in multi-story structures. The analysis results show that the maximum displacements of structures generally decrease as the stiffness of UB increases. However for some natural frequencies and seismic loads the maximum displacement and accumulated damage increases as the stiffness of UB increases.

Comparison of Approximate Nonlinear Methods for Incremental Dynamic Analysis of Seismic Performance (내진성능의 증분동적해석을 위한 비선형 약산법의 비교 검토)

  • Bae, Kyeong-Geun;Yu, Myeong-Hwa;Kang, Pyeong-Doo;Kim, Jae-Ung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.79-87
    • /
    • 2008
  • Seismic performance evaluation of structure requires an estimation of the structural performance in terms of displacement demand imposed by earthquakes on the structure. Incremental Dynamic Analysis(IDA) is a analysis method that has recently emerged to estimate structural performance under earthquakes. This method can obtained the entire range of structural performance from the linear elastic stage to yielding and finally collapse by subjecting the structure to increasing levels of ground acceleration. Most structures are expected to deform beyond the limit of linearly elastic behavior when subjected to strong ground motion. The nonlinear response history analysis(NRHA) among various nonlinear analysis methods is the most accurate to compute seismic performance of structures, but it is time-consuming and necessitate more efforts. The nonlinear approximate methods, which is more practical and reliable tools for predicting seismic behavior of structures, are extensively studied. The uncoupled modal response history analysis(UMRHA) is a method which can find the nonlinear reponse of the structures for ESDF from the pushover curve using NRHA or response spectrum. The direct spectrum analysis(DSA) is approximate nonlinear method to evaluate nonlinear response of structures, without iterative computations, given by the structural linear vibration period and yield strength from the pushover analysis. In this study, the practicality and the reliability of seismic performance of approximate nonlinear methods for incremental dynamic analysis of mixed building structures are to be compared.

Seismic Fragility Analysis of a Cable-stayed Bridge with Energy Dissipation Devices (에너지 소산장치를 장착한 사장교의 지진 취약도 해석)

  • Park, Won-Suk;Kim, Dong-Seok;Choi, Hyun-Sok;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.1-11
    • /
    • 2006
  • This paper presents a seismic fragility analysis method for a cable-stayed bridge with energy dissipation devices. Model uncertainties represented by random variables include input ground motions, characteristics of energy dissipation devices and the stiffness of cable-stayed bridge. Using linear regression, we established demand models for the fragility analysis from the relationship between maximum responses and the intensity of input ground motions. For capacity models, we considered the moment and shear force of the main tower, longitudinal displacement of the girder, deviation of the stay cables tension and the local buckling of the main steel tower as the limit states for cable-stayed bridge. As a numerical example, fragility analysis results for the 2nd Jindo bridge are presented. The effect of energy dissipation devices is also briefly discussed.

Seismic Response Characteristics of Domestic Cable-supported Bridges Due to Gyeongju Earthquakes: Case Study (경주 지진에 대한 국내 공용 중 케이블지지교량의 지진응답특성: 사례 연구)

  • Park, Sung Woo;Lee, Seung Han;Choi, Gahee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.1-12
    • /
    • 2018
  • This study presents the seismic response characteristics of domestic cable-supported bridges due to 3 earthquakes with magnitudes of 5.1, 5.8, and 4.5 in Richter scale, which occurred around Gyeongju region in 2016. The seismic acceleration response signals, recorded by the seismic acceleration sensors at the free field near bridge and designated positions on bridge, are utilized to characterize the seismic responses of structural elements of cable-supported bridges. The dynamic behaviors of bridges are presented through Fourier transform of acceleration time history. Using the peak accelerations normalized by those at the free fields, amplification effects on the tops of the pylons are analyzed comparatively bridge by bridge. Using aforementioned analyses, the necessity of development on the creteria of alert levels is discussed for the earthquake disaster response of cable-supported bridges.

Design of Unbend Braces to Satisfy Given Performance Acceptance Criteria (성능수준 만족을 위한 가새헝 소성 감쇠기의 설계)

  • 김진구;김유경;최현훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.47-54
    • /
    • 2001
  • Unbond brace hysteretic dampers are generally used to prevent or decrease structural damage in building structures subjected to strong earthquake by its energy dissipating hysteretic behavior. In the study, a straightforward design procedure for unbond brace hysteretic dampers was developed. The required amount of equivalent damping to satisfy given performance acceptance criteria was obtained conveniently based on the capacity spectrum method without carrying out time-consuming nonlinear dynamic time history analysis. Then the size of the unbond braces is determined from the required equivalent damping. Parametric study has been performed for the design variables such as natural period, yield strength, the stiffness after the first yield stress of the unbond brace. The procedure was applied to 5-story and 10-story steel frames for verification of the proposed method. According to the earthquake time history analysis results, the maximum displacement of the model structure with unbond braces supplied in accordance with the proposed method corresponds well with the given target displacement.

  • PDF

Seismic Control of Stiffness-degrading Inelastic SDOF Structures with Fully Elasto-Plastic Dampers (강성저감형 비탄성 단자유도 구조물에 설치된 완전탄소성 감쇠기의 제진성능)

  • Park, Ji-Hun;Kim, Hun-Hee;Kim, Ki-Myon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.37-48
    • /
    • 2010
  • The seismic control effect of reinforced concrete structures with low energy dissipating capacity due to stiffness degradation is investigated through nonlinear time history analysis. The primary structure is idealized as a SDOF system of modified Takeda hysteresis rule and an elasto-perfectly-plastic nonlinear spring is added to represent a hysteretic damping device. Based on statistics of the numerical analysis, equivalent linearization techniques are evaluated, and empirical equations for response prediction are proposed. As a result, estimation of the ductility demand with proposed empirical equations is more desirable than the equivalent linearization techniques. The optimal yield strengths based on empirical equations are significantly different from the optimal yield strength of elasto-perfectly-plastic systems. Also, the results indicate that the reduction effect of the ductility demand is more remarkable for smaller natural periods.

Seismic Fragility Analysis by Key Components of a Two-pylon Concrete Cable-stayed Bridge (2주탑 콘크리트 사장교의 주요 부재 지진 취약도 분석)

  • Shin, Yeon-Woo;Hong, Ki-Nam;Kwon, Yong-Min;Yeon, Yeong-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.26-37
    • /
    • 2020
  • This study intends to present a fragility analysis method suitable for concrete cable-stayed bridges by performing an analysis reflecting design criteria and material characteristics from the results of inelastic time-history analysis. In order to obtain the fragility curve of the cable-stayed bridge, the limit state of the main component of the cable-stayed bridge is determined, and the damage state is classified by comparing it with the response value based on inelastic time history analysis. The seismic fragility curve of the cable-stayed bridge was made by obtaining the probability of damage to PGA that the dynamic response of the vulnerable parts to input ground motion would exceed the limit state of each structural member. According to the pylon's fragility curve, the probability of moderate damage at 0.5g is 32% for the longitudinal direction, while 7% for the transversal direction, indicating that the probability of damage in the longitudinal direction is higher in the same PGA than in the transversal direction. The seismic fragility curve of the connections showed a very high probability of damage, meaning that damage to the connections caused by earthquakes is very sensitive compared to damage to the pylon and cables. The cable's seismic fragility curve also showed that the probability of complete damage state after moderate damage state gradually decreased, resulting in less than 30% probability of complete damage at 2.0g.

Seismic Behavior of a Bridge with Pile Bent Structures Subjected to Multi-Support Excitation (다지점 가진에 의한 단일형 현장타설말뚝 교량의 지진거동)

  • Sun, Chang-Ho;Ahn, Sung-Min;Kim, Ick-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.425-434
    • /
    • 2019
  • It is important to ensure the seismic safety of pile-bent bridges constructed in areas with thick soft ground consisting of various soil layers against seismic motion in these layers. In this study, several synthetic seismic waves that are compatible with the seismic design spectrum for rock sites were generated, and the ground acceleration history of each soil layer was obtained based on ground analyses. Using these acceleration histories, each soil layer was modeled using equivalent linear springs, and multi-support excitation analyses were performed using the input motion obtained at each soil layer. Due to the nonlinear behavior of the soft soil layers, the intensity of the input ground motion was not amplified, which resulted in the elastic behavior of the bridge. In addition, inputting the acceleration history obtained from a particular layer simultaneously into all the ground springs reduced the response. Therefore, the seismic performance of this type of bridge might be overestimated if multi-excitation analysis is not performed.