• Title/Summary/Keyword: 시간기반 추론 알고리즘

Search Result 65, Processing Time 0.023 seconds

Preliminary Study on Automated Path Generation and Tracking Simulation for an Unmanned Combine Harvester (자율주행 콤바인을 위한 포장 자동 경로생성 및 추종 시뮬레이션 기초연구)

  • Jeon, Chan-Woo;Kim, Hak-Jin;Han, XiongZhe;Kim, Jung-Hun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.20-20
    • /
    • 2017
  • 궤도형 차량의 이동구조는 에너지 소비 측면에서 단점이 있지만 접지압의 감소로 인한 평지 및 야지험지에서도 원활한 주행이 가능한 장점으로 인해 농업분야의 플랫폼에서 많이 사용된다. 곡식을 베는 일과 탈곡하는 일을 한 번에 하는 콤바인도 이러한 무한궤도형 이동구조를 사용한다. 또한 궤도형 차량의 방향전환 및 주행속도 변환은 좌 우 궤도의 회전 속도를 다르게 하여 동시에 제어하기 때문에 정교한 주행 성능을 위해서는 궤도형 차량의 기구학 모델을 고려한 경로 계획이 필요하다. 본 연구에서는 직교형 포장에서 Round harvesting 기법 기반으로 궤도형 차량의 기구학 모델 및 포장정보를 고려한 자율주행 콤바인 경로계획 알고리즘을 개발하고자 하였다. 이를 위해 Labview 기반의 궤도형 차량 시뮬레이션을 구축하여 실제 포장정보를 이용해 생성 된 경로의 적용 가능성을 구명하고자 하였다. 자율주행 콤바인 경로 계획은 콤바인의 길이, 너비, 회전 시 좌 우 궤도의 속도 비, 직진 속도와 회전 속도 비, 회전 각도, 포장의 외부 경계선, 작업 겹침 량, 회경 횟수를 이용하여 좌현 새머리 선회를 포함한 내부 왕복작업 경로를 생성하며 외부 회경 횟수는 2~3회를 가정하였다. 자율주행 시뮬레이션은 차체와 궤도 자체의 미끄러짐과 작동기 지연시간을 단순화 한 궤도형 기구학 모델형태로 구성하였다. 추종 알고리즘은 선견 거리법을 사용하였으며, 측면 변이값과 방향 오차의 선형조합을 이용하여 조향변수를 정의하고 퍼지로직기반으로 좌 우 궤도 속도를 7 단계화하여 조향장치를 모델링하였다. 실험결과 개발 된 경로생성 알고리즘은 실제 취득 된 포장 외부 경계 GPS 위 경도를 이용해 자동으로 생성이 가능하며 간략화 된 콤바인 시뮬레이션에서 직진주행 RMS 위치 오차는 0.05 m, 선회구간에서 직진 구간 진입 시 RMS 위치 오차는 0.11 m, 직진 구간 RMSE 방향 오차는 3.2 deg로 콤바인 예취부 간격인 30 cm보다 작은 위치 오차를 보이며 생성된 경로 전체 추종이 가능함을 나타내었다.

  • PDF

OHC Algorithm for RPA Memory Based Reasoning (RPA분류기의 성능 향상을 위한 OHC알고리즘)

  • 이형일
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.5
    • /
    • pp.824-830
    • /
    • 2003
  • RPA (Recursive Partition Averaging) method was proposed in order to improve the storage requirement and classification rate of the Memory Based Reasoning. That algorithm worked well in many areas, however, the major drawbacks of RPA are it's pattern averaging mechanism. We propose an adaptive OHC algorithm which uses the FPD(Feature-based Population Densimeter) to increase the classification rate of RPA. The proposed algorithm required only approximately 40% of memory space that is needed in k-NN classifier, and showed a superior classification performance to the RPA. Also, by reducing the number of stored patterns, it showed a excellent results in terms of classification when we compare it to the k-NN.

  • PDF

Knowledge Reasoning Model using Association Rules and Clustering Analysis of Multi-Context (다중상황의 군집분석과 연관규칙을 이용한 지식추론 모델)

  • Shin, Dong-Hoon;Kim, Min-Jeong;Oh, SangYeob;Chung, Kyungyong
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.11-16
    • /
    • 2019
  • People are subject to time sanctions in a busy modern society. Therefore, people find it difficult to eat simple junk food and even exercise, which is bad for their health. As a result, the incidence of chronic diseases is increasing. Also, the importance of making accurate and appropriate inferences to individual characteristics is growing due to unnecessary information overload phenomenon. In this paper, we propose a knowledge reasoning model using association rules and cluster analysis of multi-contexts. The proposed method provides a personalized healthcare to users by generating association rules based on the clusters based on multi-context information. This can reduce the incidence of each disease by inferring the risk for each disease. In addition, the model proposed by the performance assessment shows that the F-measure value is 0.027 higher than the comparison model, and is highly regarded than the comparison model.

A Design of the Ontology-based Situation Recognition System to Detect Risk Factors in a Semiconductor Manufacturing Process (반도체 공정의 위험요소 판단을 위한 온톨로지 기반의 상황인지 시스템 설계)

  • Baek, Seung-Min;Jeon, Min-Ho;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.804-809
    • /
    • 2013
  • The current state monitoring system at a semiconductor manufacturing process is based on the manually collected sensor data, which involves limitations when it comes to complex malfunction detection and real time monitoring. This study aims to design a situation recognition algorithm to form a network over time by creating a domain ontology and to suggest a system to provide users with services by generating events upon finding risk factors in the semiconductor process. To this end, a multiple sensor node for situational inference was designed and tested. As a result of the experiment, events to which the rule of time inference was applied occurred for the contents formed over time with regard to a quantity of collected data while the events that occurred with regard to malfunction and external time factors provided log data only.

A variational Bayes method for pharmacokinetic model (약물동태학 모형에 대한 변분 베이즈 방법)

  • Parka, Sun;Jo, Seongil;Lee, Woojoo
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.1
    • /
    • pp.9-23
    • /
    • 2021
  • In the following paper we introduce a variational Bayes method that approximates posterior distributions with mean-field method. In particular, we introduce automatic differentiation variation inference (ADVI), which approximates joint posterior distributions using the product of Gaussian distributions after transforming parameters into real coordinate space, and then apply it to pharmacokinetic models that are models for the study of the time course of drug absorption, distribution, metabolism and excretion. We analyze real data sets using ADVI and compare the results with those based on Markov chain Monte Carlo. We implement the algorithms using Stan.

Accuracy evaluation of ZigBee's indoor localization algorithm (ZigBee 실내 위치 인식 알고리즘의 정확도 평가)

  • Noh, Angela Song-Ie;Lee, Woong-Jae
    • Journal of Internet Computing and Services
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • This paper applies Bayesian Markov inferred localization techniques for determining ZigBee mobile device's position. To evaluate its accuracy, we compare it with conventional technique, map-based localization. While the map-based localization technique referring to database of predefined locations and their RSSI data, the Bayesian Markov inferred localization is influenced by changes of time, direction and distance. All determinations are drawn from the estimation of Received Signal Strength (RSS) using ZigBee modules. Our results show the relationship between RSSI and distance in indoor ZigBee environment and higher localization accuracy of Bayesian Markov localization technique. We conclude that map-based localization is not suitable for flexible changes in indoors because of its predefined condition setup and lower accuracy comparing to distance-based Markov Chain inference localization system.

Deep Learning Based On-Device Augmented Reality System using Multiple Images (다중영상을 이용한 딥러닝 기반 온디바이스 증강현실 시스템)

  • Jeong, Taehyeon;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.341-350
    • /
    • 2022
  • In this paper, we propose a deep learning based on-device augmented reality (AR) system in which multiple input images are used to implement the correct occlusion in a real environment. The proposed system is composed of three technical steps; camera pose estimation, depth estimation, and object augmentation. Each step employs various mobile frameworks to optimize the processing on the on-device environment. Firstly, in the camera pose estimation stage, the massive computation involved in feature extraction is parallelized using OpenCL which is the GPU parallelization framework. Next, in depth estimation, monocular and multiple image-based depth image inference is accelerated using the mobile deep learning framework, i.e. TensorFlow Lite. Finally, object augmentation and occlusion handling are performed on the OpenGL ES mobile graphics framework. The proposed augmented reality system is implemented as an application in the Android environment. We evaluate the performance of the proposed system in terms of augmentation accuracy and the processing time in the mobile as well as PC environments.

A Study on Random Forest-based Estimation Model for Changing the Automatic Walking Mode of Above Knee Prosthesis (대퇴의족의 자동 보행 모드 변경을 위한 랜덤 포레스트 기반 추정 모델 개발에 관한 연구)

  • Na, Sun-Jong;Shin, Jin-Woo;Eom, Su-Hong;Lee, Eung-Hyuk
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.9-18
    • /
    • 2020
  • The pattern recognition or fuzzy inference, which is mainly used for the development of the automatic walking mode change of the above knee prosthesis, has a disadvantage in that it is difficult to estimate with the immediate change of the walking environment. In order to solve a disadvantage, this paper developed an algorithm that automatically converts the walking mode of the next step by estimating the walking environment at a specific gait phase. Since the proposed algorithm should be implanted and operated in the microcontroller, it is developed using the random forest base in consideration of calculation amount and estimated time. The developed random forest based gait and environmental estimation model were implanted in the microcontroller and evaluated for validity.

A Study on the Efficient ATICC(Adaptive Time Interval Clustering Control) Algorithm for MANET (MANET에서 효율적인 ATICC(Adaptive Time Interval Clustering Control) 알고리즘에 대한 연구)

  • Kim, Young-sam;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.306-309
    • /
    • 2009
  • MANET(Mobile Ad-hoc Network)은 기간망에 의존하지 않는 이동 노드들로 구성된 자율망 또는 추론망 토폴로지에 의한 멀티홉 무선 네트워크이다. MANET을 구성하는 각 노드의 이동성, 속도 그리고 에너지와 같은 다양한 속성정보는 망의 특징과 운영을 결정하는 요인이다. 특히 망의 운영상, 전송 대역폭과 에너지 사용에 따른 제약을 가지며 이러한 특징을 고려한 라우팅 프로토콜의 설계 및 하드웨어 개발이 중요하게 요구된다. 본 논문에서는 계층적 클러스터 구조의 MANET 환경에서 노드의 에너지 속성과 네트워크의 트래픽 상태를 고려한 적응적 시간차 노드관리 기법인 ATICC(Adaptive Time Interval Clustering Control)을 제안한다. 제안된 ATICC은 시간차 노드 관리기법인 TICC(Time Interval Clustering Control)[1]에 기반하며 노드에 최적화된 Active/Sleep, Idle Listening 상태를 적응적으로 설정한 후 패킷을 전송함으로서 계층적 클러스터 내의 각 노드의 균형적인 에너지 소모를 이루는 에너지 효율적인 방식이다. 제안한 노드관리 방법은 기존의 LEACH, TICC과 비교 실험하고 그 성능을 검증하였다. 실험 결과, 제안한 노드관리 방법이 노드별 에너지 소모량을 줄였으며 전체 네트워크의 생존시간을 연장함으로서 기존의 방법 보다 우수함을 확인하였다.

  • PDF

Predicate Ontology for Automatic Ontology Building (온톨로지 자동 구축을 위한 서술어 온톨로지)

  • Min, Young-Kun;Lee, Bog-Ju
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.28-31
    • /
    • 2008
  • 시맨틱 웹의 기반인 온톨로지는 검색, 추론, 지식표현 등 다양한 분야에서 사용하고 있다. 하지만 잘 구성된 온톨로지를 개발하는 것은 시간적, 물질적으로 많은 자원이 소모된다. 온톨로지를 자동으로 구축하면 이러한 소모를 줄일 수 있는 장점이 있다. 본 논문에서는 자연어처리를 온톨로지 자동 구축에 사용하기 위하여 자연어의 서술부분을 온톨로지의 서술어로 변환할 수 있는 서술어 온톨로지를 제안한다. 그리고 제안된 서술어 온톨로지를 사용하여 자연어 문장의 서술어 부분을 온톨로지의 predicate 로 변환하는 알고리즘을 소개한다. 또한 제안된 온톨로지를 온톨로지 언어인 OWL을 사용하여 구축하였다.