이 논문에서는 2D 및 3D 영상의 어텐션량을 측정하여 정지 및 동영상의 재설정 및 압축처리 기법을 제시하였다. 2D 어텐션은 세 개의 주요 구성, 즉, 영상의 세기, 컬러 및 방향성을 고려하였으며, 3D 영상에서 깊이 정보를 고려하였다. 시각적 어텐션은 관심있고 흥미있는 영역이나 객체를 검출하기 위해 희소성을 정량화하는 기법에 의해 구하였다. 왜곡된 스테레오 영상에서 변화된 깊이 정보를 어텐션 확률에 정합시켜서 최종적으로 저위 HVS 반응을 실제 어텐션 확률과 종합하여 스테레오 왜곡 예측기를 설계하였다. 결과로 기존 모델에 비해 효과적인 어텐션 기법을 개발하였으며 이를 비디오 재설정에 적용하여 성능을 입증하였다.
의료 인공지능은 특정 진단에서 높은 정확도를 보이지만 모델의 신뢰성 문제로 인해 활발하게 쓰이지 못하고 있다. 이에 따라 인공지능 모델의 진단에 대한 원인 설명의 필요성이 대두되었고 설명가능한 의료 인공지능에 관한 연구가 활발히 진행되고 있다. 하지만 MRI 등 의료 영상 인공지능 분야에서 주로 진행되고 있으며, 이미지 형태가 아닌 전자의무기록 데이터 (Electronic Health Record, EHR) 를 기반으로 한 모델의 설명가능성 연구는 EHR 데이터 자체의 복잡성 때문에 활발하게 진행 되지 않고 있다. 본 논문에서는 전자의무기록 데이터인 MIMIC-III (Medical Information Mart for Intensive Care) 를 전처리 및 그래프로 표현하고, GCT (Graph Convolutional Transformer) 모델을 학습시켰다. 학습 후, 어텐션 흐름 그래프를 시각화해서 모델의 예측에 대한 직관적인 설명을 제공한다.
시각질의응답과 이미지 캡셔닝은 이미지의 특징과 문장의 언어적인 특징을 이해하는 것을 요구하는 작업이다. 따라서 두 가지 작업 모두 이미지와 텍스트를 연결해 줄 수 있는 공동 어텐션이 핵심이라고 할 수 있다. 본 논문에서는 MSCOCO 데이터 셋에 대하여 사전 훈련된 transformer 모델을 이용 하여 캡션을 생성한 후 이를 활용해 시각질의응답의 성능을 높이는 모델을 제안하고자 한다. 이때 질 문과 관계없는 캡션은 오히려 시각질의응답에서 답을 맞히는데 방해가 될 수 있기 때문에 질문과의 유사도를 기반으로 질문과 유사한 일부의 캡션을 활용하도록 하였다. 또한 캡션에서 불용어는 답을 맞히는데 영향을 주지 못하거나 방해가 될 수 있기 때문에 제거한 후에 실험을 진행하였다. 기존 시 각질의응답에서 이미지와 텍스트간의 공동 어텐션을 활용하여 좋은 성능을 보였던 deep modular co-attention network (MCAN)과 유사도 기반의 선별된 캡션을 사용하여 VQA-v2 데이터에 대하여 실험을 진행하였다. 그 결과 기존의 MCAN모델과 비교하여 유사도 기반으로 선별된 캡션을 활용했을 때 성능 향상을 확인하였다.
본 연구에서는 얼굴 동영상에서 입술의 움직임과 음성 간의 동기화 탐지 방법을 제안한다. 기존의 연구에서는 얼굴 탐지 기술로 얼굴 영역의 바운딩 박스를 도출하고, 박스의 하단 절반 영역을 시각 인코더의 입력으로 사용하여 입술-음성 동기화 탐지에 필요한 시각적인 특징을 추출하였다. 본 연구에서는 입술-음성 동기화 탐지 모델이 음성 정보의 발화 영역인 입술에 더 집중할 수 있도록 사전 학습된 시각적 Attention 기반의 인코더 도입을 제안한다. 이를 위해 음성 정보 없이 시각적 정보만으로 발화하는 말을 예측하는 독순술(Lip-Reading)에서 사용된 Visual Transformer Pooling(VTP) 모듈을 인코더로 채택했다. 그리고, 제안 방법이 학습 파라미터 수가 적음에도 불구하고 LRS2 데이터 세트에서 다섯 프레임 기준으로 94.5% 정확도를 보임으로써 최근 모델인 VocaList를 능가하는 것을 실험적으로 증명하였다. 또, 제안 방법은 학습에 사용되지 않은 Acappella 데이터셋에서도 VocaList 모델보다 8% 가량의 성능 향상이 있음을 확인하였다.
전통적인 음성인식 모델은 주로 음향 모델과 언어 모델을 사용하여 구현된다. 이때 음향 모델을 학습시키기 위해서는 음성 데이터에 대한 정답 텍스트뿐만 아니라 음성인식에 사용되는 단어의 발음사전과 프레임 단위의 음소 정답 데이터가 필요하다. 이 때문에 모델을 훈련하기 위해서는 먼저 프레임 단위의 정답을 생성하는 등의 여러 과정이 필요하다. 그리고 음향 모델과 별도의 텍스트 데이터로 훈련한 언어 모델을 적용하여야 한다. 이러한 불편함을 해결하기 위하여 최근에는 하나의 통합 신경망 모델로 이루어진 종단간(end-to-end) 음성인식 모델이 연구되고 있다. 이 모델은 훈련에 여러 과정이 필요없고 모델의 구조를 이해하기 쉽다는 장점이 있다. 하지만 인식이 내부적으로 어떤 과정을 거쳐 이루어지는지 알기 어렵다는 문제가 있다. 본 논문에서는 어텐션 기반 종단간 모델을 시각화 분석하여 내부적인 작동 원리를 이해하고자 하였다. 이를 위하여 BLSTM-HMM 하이브리드 음성인식 모델의 음향 모델과 종단간 음성인식 모델의 인코더를 비교하고, 신경망 레이어 별로 어떠한 차이가 있는지 분석하기 위해 t-SNE를 사용하여 시각화하였다. 그 결과로 음향모델과 종단간 모델 인코더의 차이점을 알 수 있었다. 또한 종단간 음성인식 모델의 디코더의 역할을 언어모델 관점에서 분석하고, 종단간 모델 디코더의 개선이 성능 향상을 위해 필수적임을 알 수 있었다.
호흡기 관련 전염병의 주된 증상인 기침은 공기 중에 감염된 병원균을 퍼트리며 비감염자가 해당 병원균에 노출된 경우 높은 확률로 해당 전염병에 감염될 위험이 있다. 또한 사람들이 많이 모이는 공공장소 및 실내 공간에서의 기침 탐지 및 조치는 전염병의 대규모 유행을 예방할 수 있는 효율적인 방법이다. 따라서 본 논문에서는 탐지해야 하는 기침 소리 및 일상생활 속 발생할 수 있는 기침과 유사한 배경 소리 들을 Mel-Spectrogram으로 변환한 후 시각화된 특징을 CNN 모델에 학습시켜 기침 탐지를 진행하며, 일반적으로 사용되는 사전 학습된 CNN 모델에 제안된 Attention 모듈의 적용이 기침 탐지 성능 향상에 도움이 됨을 입증하였다.
서비스 로봇은 비전 카메라, 초음파 센서, 레이저 스캐너, 마이크로폰 등과 같은 다양한 센서를 장착하고 있다. 이들 센서들은 이들 각각의 고유한 기능을 가지고 있기도 하지만, 몇몇을 조합하여 사용함으로써 더욱 복잡한 기능을 수행할 수 있다. 음성영상 융합은 서로가 서로를 상호보완 해주는 대표적이면서도 강력한 조합이다. 사람의 경우에 있어서도, 일상생활에 있어 주로 시각과 청각 정보에 의존한다. 본 발표에서는, 음성영상 융합에 관한 두 가지 연구를 소개한다. 하나는 음원 방향 검지 성능의 향상에 관한 것이고, 나머지 하나는 음원 방향 검지와 얼굴 검출을 이용한 로봇 어텐션에 관한 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.