• Title/Summary/Keyword: 승차감지수

Search Result 39, Processing Time 0.022 seconds

Human Body Vibration Analysis under Consideration of Seat Dynamic Characteristics (시트 동특성을 고려한 인체 진동 해석)

  • Kang, Juseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5689-5695
    • /
    • 2012
  • In this study, vibration properties of seat and human body are analyzed through test and numerical analysis methods by taking into account the viscoelastic characteristics of polyurethane foam as seat material which is applied for vehicle. These viscoelastic characteristics which show nonlinear and quasi-static behavior are obtained by compression test. In addition, the viscous elastic property of polyurethane foam is modelled mathematically by using convolution integral and nonlinear stiffness model. In order to analyze the performance on ride comfort of seat, vertical vibration model is established by using dynamic model of seat and vertical vibration model of human body at ISO5982, and so the related motion equations are derived. A numerical analysis simulation is applied by using the nonlinear motion equation with Runge-Kutta integral method. The dynamic responses of seat and human body on the input of vibration acceleration measured at the floor of the railway vehicle are examined. The variation of the index value at ride comfort on seat design parameters is analyzed and the methodology on seat design is suggested.

Study on Riding Quality Improvement of a Forklift Truck through Structural Vibration Analysis (지게차 구조진동 특성분석을 통한 운전자승차감 개선기법 연구)

  • Ra, Duck-Joo;Kim, Jae-Hwan;Choi, Suck-Bae;Kim, Nag-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.542-545
    • /
    • 2004
  • The vibration reduction process for the driver comfort of a forklift truck is studied in this study since the related driver comfort is a primary design target in the vehicle design recently. However, the underlying study for a vibration analysis regarding to the driver comfort is still an element stage. Thus, a preceding large work has to be needed to apply the CAE technology for the detail vehicle design, and it prevents the vehicle optimal design. To reduce the proceeding large works, the evaluated process and required data are comply with the accumulated trouble shooting experiences in this study. Since the driver comfort is a human related problem, the human vibration index associated with analysis vibration result is additionally introduced as a driver comfort judgement value.

  • PDF

Development of Vibration Index for the Objective Evaluations of Idle Vibration Quality in a Passenger Car (차량 아이들 감성진동 평가를 위한 진동평가지수의 연구)

  • Park, Hong-Seok;Lee, Sang-Kwon;Yoon, Gi-Soo;Lee, Min-Sup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.214-222
    • /
    • 2012
  • Driver's feeling is variously affected by lots of components such as engine, frame, wheels, and seats during the operation of automobiles. The main objective of this research is to identify the correlation between subjective evaluation and vibration metrics that was set by ISO to investigate development of the car vibration quality index using multiple linear regressions(MLR). A previous research related with automotive vibration quality used the method of calculating acceleration values of the point of a seat, a seat back, foot as RMS for objective evaluation. The automotive comfort is determined by RMS values. In comparison with the previous research, this study includes not only the vibration metrics, but also subjective values by jury evaluation. By indentifying the correlation between subjective evaluation and vibration metrics, the automotive vibration quality index is developed through MLR. Based on the results of this study, the proposed the automotive vibration quality index which developed through MLR will be helpful to obtain objective and reliable automotive comfort values.

Efficient Optimization of the Suspension Characteristics Using Response Surface Model for Korean High Speed Train (반응표면모델을 이용한 한국형 고속전철 현가장치의 효율적인 최적설계)

  • Park, C.K.;Kim, Y.G.;Bae, D.S.;Park, T.W.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.461-468
    • /
    • 2002
  • Computer simulation is essential to design the suspension elements of railway vehicle. By computer simulation, engineers can assess the feasibility of the given design factors and change them to get a better design. But if one wishes to perform complex analysis on the simulation, such as railway vehicle dynamic, the computational time can become overwhelming. Therefore, many researchers have used a surrogate model that has a regression model performed on a data sampling of the simulation. In general, metamodels(surrogate model) take the form y($\chi$)=f($\chi$)+$\varepsilon$, where y($\chi$) is the true output, f($\chi$) is the metamodel output, and is the error. In this paper, a second order polynomial equation is used as the RSM(response surface model) for high speed train that have twenty-nine design variables and forty-six responses. After the RSM is constructed, multi-objective optimal solutions are achieved by using a nonlinear programming method called VMM(variable matric method) This paper shows that the RSM is a very efficient model to solve the complex optimization problem.

Development of Vibration Index for the Objective Evaluations of Idle Vibration Quality in a Passenger Car (차량 아이들 감성진동 평가를 위한 진동평가지수의 연구)

  • Park, Hong-Seok;Lee, Sang-Kwon;Yoon, Gi Soo;Lee, Min Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.683-688
    • /
    • 2012
  • Driver's feeling is variously affected by lots of components such as engine, frame, wheels, and seats during the operation of automobiles. The main objective of this research is to identify the correlation between subjective evaluation and vibration metrics that was set by ISO to investigate development of the car vibration quality index using multiple linear regressions (MLR). A previous research related with automotive vibration quality used the method of calculating acceleration values of the point of a seat, a seat back, foot as RMS for objective evaluation. The automotive comfort is determined by RMS values. In comparison with the previous research, this study includes not only the vibration metrics, but also subjective values by jury evaluation. By indentifying the correlation between subjective evaluation and vibration metrics, the automotive vibration quality index is developed through MLR. Based on the results of this study, the proposed the automotive vibration quality index which developed through MLR will be helpful to obtain objective and reliable automotive comfort values.

  • PDF

Vibration Control of Vehicle using Road Profile Information (외란 형상 정보를 활용한 진동제어)

  • Kim, Hyo-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.431-437
    • /
    • 2017
  • In this study, based on the RPS algorithm, the application results to an electrically controlled suspension system using previewed road information are presented. Reducing the excessive vibration induced by a disturbance transmitted to the system and secure its stability is a major issue. In particular, in the automotive industry, the demand is constantly being raised. A typical external disturbance causing vibration and instability of a vehicle is an irregular roadway surface that contacts a running vehicle tire. Therefore, obtaining such profile information is an important process. The RPS algorithm using a multi sensor system was constructed and implemented in a real car. Through experimental work using the RPS system included non-contact type optical sensors, it could robustly reconstruct the road input profiles from the intermixed data onto the vehicle's dynamic motion while traveling at an uneven roadway surface. A controller with a preview control was designed in the framework of a semi-active suspension system based on the 7 degrees of freedom full vehicle model. The control performance of the system was evaluated through simulations and the results were compared with the passive vehicle condition. These results highlight the feasibility of the presented control frame.

A Study on the Relation between IRI and PrI (평탄성 지수 IRI와 PrI의 상관관계에 관한 연구)

  • Kim, Kook-Han;Lee, Byung-Duck;Choi, Go-Il;Yang, Sung-Cheol
    • International Journal of Highway Engineering
    • /
    • v.5 no.1 s.15
    • /
    • pp.11-18
    • /
    • 2003
  • Road roughness, as the key factor influencing not only drivers' ride quality and safety but also pavement deterioration, is one of the most important pavement performance indicator to be evaluated by users' subjective assessment. For this reason, a specific number of the pavement roughness has been adopted to monitor the condition of a road for pavement management systems and to evaluate the quality of newly constructed sections, however, none of the unified methodology was internationally accepted. In Korea highway network, road roughness has been used mainly to evaluate newly placed pavement by using 7.6m CP (California Profile meter) to calculate PrI (Profile Index). But this instrument is manually operated to measure road profiles by traffic closure and their interpretation depends on personal bias. Therefore, problems arisen from the manually operated instrument will be overcome by using the APL (Longitudinal Profile Analyzer) which can be operated in the speed of 80km per hour. A study was conducted to correlate the relation from both concrete and asphalt pavement between IRI (measured by APL) and PrI (measured by 7.6m CP). Test results showed that there was a good correlation between IRI and PrI.

  • PDF

Evaluation of Running Performance of the Composite Bogie under Different Side Beam Stiffness (사이드 빔 강성에 따른 복합소재 대차의 주행성능 평가)

  • Kim, Jung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.86-92
    • /
    • 2017
  • In this study, a running performance evaluation and roller rig test was conducted to evaluate the applicability of a composite bogie frame, which has the role of the primary suspension. The composite bogie frame was made of a GEP224 glass/epoxy prepreg. Vehicle dynamic analysis was carried out on the composite bogie with three different kinds of side beam thicknesses (50 mm, 80 mm, and 150 mm). From the results, the composite bogie with a side beam thickness of 80 mm satisfied all the dynamic design requirements. Although the composite bogie with the side beam thickness of 50mm also met the design requirements, its critical speed was just a 2% margin to the requirement. In contrast, the model of the side beam thickness of 150mm did not meet the ride comfort. In addition, a composite bogie frame with the side beam thickness of 80 mm was fabricated and installed on a complete bogie. Moreover, the roller rig test using the fully equipped bogie was performed to evaluate the critical speed. During the test, the lateral excitation was imposed on the wheelsets to realize the rail irregularity. There was no divergence of the lateral displacement of the wheelsets while increasing the speed. The measured critical speed was similar to the predicted result.

Development and Evaluation of Safe Route Service of Electric Personal Assistive Mobility Devices for the Mobility Impaired People (교통약자를 위한 전동 이동 보조기기 안전 경로 서비스의 개발과 평가)

  • Je-Seung WOO;Sun-Gi HONG;Sang-Kyoung YOO;Hoe Kyoung KIM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.3
    • /
    • pp.85-96
    • /
    • 2023
  • This study developed and evaluated a safe route guidance service for electric personal assistive mobility device used mainly by the mobility impaired people to improve their mobility. Thirteen underlying factors affecting the mobility of electric personal assistive mobility device have been derived through a survey with the mobility impaired people and employees in related organizations in Busan Metropolitan City. After assigning safety scores to individual factors and identifying the relevant factors along routes of interest with an object detection AI model, the safe route for electric personal assistive mobility device was provided through an optimal path-finding algorithm. As a result of comparing the general route of T-map and the recommended route of this study for the identical routes, the latter had relatively fewer obstacles and the gentler slope than the former, implicating that the recommended route is safer than the general one. As future works, it is necessary to enhance the function of a route guidance service based on the real-time location of users and to conduct spot investigations to evaluate and verify its social acceptability.