• Title/Summary/Keyword: 승압형 컨버터

Search Result 204, Processing Time 0.025 seconds

A Study On Power Factor Correction of SMAW(shielded metal-arc welding) Using Single Phase AC/DC Boost Converter (단상 AC/DC 승압형 컨버터를 이용한 피복 아크 용접기 역률 개선에 관한 연구)

  • Yu Y. J.;Kim L. H.;Kim J. H.;Won C. Y.;Kim Y. R.;Lee S. Y.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.556-559
    • /
    • 2001
  • In this paper, we proposed AC/DC boost converter to improve input current harmonic reduction in SMAW(shielded metal-arc welding). The proposed harmonic reduction with the boost converter design and the UC2854 integrated circuit which controls the converter, The topology of welding power supply is made of a pair of boost converter and welder half-bridge IGBT inverter. The voltage arc is modeled by a variable resistance in series with a voltage source. The results has been confirmed by PSIM simulation tool. The simulation results show that input at current is nearly sinusoidal with low harmonic contents and sinusoidal input current waveform at high power factor.

  • PDF

A Study of ZC-ZVS PWM Boost Converter (ZC-ZVS PWM 승압형 컨버터에 관한 연구)

  • Kim Tea-Woo;Jung Hyo-Geun;Ahn Hee-Wook;Kim Hack-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.211-214
    • /
    • 2001
  • This paper introduces a ZC-ZVS PWM(Pulse-Width -Modulation) boost converter. The IGBT(main switch) of the proposed converter is always switched at ZCS and soft switching of MOSFET(auxiliary switch) as well. Therefore, the proposed converter minimized the turn on/turn off switching losses of switches and reduced conduction losses by using IGBT switch. Moreover, using paralleled IGBT-MOSFET switch overcame the switching frequency limitation. Therefore high power density system can be realized. As mentioned above, the characteristics are verified through experimental results.

  • PDF

An analysis of phase-shifted parallel -input/series-output dual converter for high-power step-up applications (대용량 승압형 위상천이 병렬입력/직렬출력 듀얼 컨버터의 분석)

  • Kang Jeong-il;Roh Chung-Wook;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.189-192
    • /
    • 2001
  • A new phase-shifted parallel-input/series-output dual converter for high-power step-up applications has been proposed. It features a high efficiency due to the low switch turn-off voltage, low device stresses, low ripple contents, and a fast control-to-output dynamics compared to its PWM counterpart. To confirm the validity of the proposed converter, experimental results from an 800W, 350Vdc prototype are presented.

  • PDF

A comparative study on implementation methods of PWM controller in small scale solar energy system (소용량 태양광발전용 PWM제어기의 하드웨어 구현방식 비교)

  • Lee, Hoong-Joo;Lee, Jun-Ha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.963-969
    • /
    • 2006
  • In this study, we designed a digital fuzzy logic controller based on FPGA and microprocessor for MPPT of the solar power generation system. A fuzzy algorithm to control the power tracking function of a boost converter has been built into the FPGA, and applied to the small scaled solar power generation system. The embodied controller showed a stable operation characteristic with the small output voltage ripple for the intensity change of solar radiation. This result proves that the implementation of the power tracking controller using FPGA is an effective way compared to the existing one using microprocessors.

  • PDF

Induction Motor Control using Bi-directional QZSI (양방향 전력전달이 가능한 전압형 QZSI를 이용한 유도 전동기 제어)

  • Han, Sang-Hyup;Kim, Heung-Geun;Gu, Bon-Guan;Cha, Honnyong;Chun, Tae-Won;Nho, Eui-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.263-264
    • /
    • 2014
  • 양방향 QZSI(Quasi Z-Source Inverter)를 이용한 유도전동기 제어 시스템은 암단락 상태를 제어에 이용할 수 있어서 추가 컨버터 없이도 단일 구조로 가변 배터리 전압을 일정하게 승압할 수 있다. 암단락을 이용한 승압은 직류단 전압제어가 보장되어야 하며 전압 제어기 성능이 인버터 출력 전류 제어에 상당한 영향을 미친다. 전압제어는 임피던스 네트워크의 커패시터 전압을 일정하게 제어하거나 직류단 전압을 직접적으로 또는 간접적으로 일정하도록 제어하여 구현할 수 있다. 본 논문에서 양방향 전력 전달이 가능한 QZSI를 통해 유도 전동기를 제어하며 시뮬레이션을 통해 이를 검증한다.

  • PDF

Analysis of input current in a Boost AC-DC converter using the partial resonant method (부분공진 승압형 AC-DC 컨버터의 입력전류 해석)

  • Kwak, Dong-Kurl;Lee, Kyung-Chin;Park, Jum-Mun;Lee, Jin-Ho;Kim, Young-Mun;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.185-187
    • /
    • 1995
  • A boost converter proposed in this paper operates with high power factor due to input current of sinusoidal waveform. If there were no input LPF, the current is got to be discontinuos form in proportion to AC input voltage magnitude under the constant duty factor switching. Thereupon, the harmonics of input current waveform is reduced and the LPF is made with few elaboration and the control circuit is simple. The switching devices in proposed circuit are operated with soft switching by the partial resonant method. The patial resonant circuit makes use of a reactor using step-up and a capacitor of loss-less snubber. The result is that switching loss is very low and efficiency of system is high.

  • PDF

The Design of Single Phase PFC using a DSP (DSP를 이용한 단상 PFC의 설계)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.57-65
    • /
    • 2007
  • This paper presents the design of single phase PFC(Power Factor Correction) using a DSP(TMS320F2812). In order to realize the proposed boost PFC converter in average current mode control, the DSP requires the A/D sampling values for a line input voltage, a inductor current, and the output voltage of the converter. Because of a FET switching noise, these sampling values contain a high frequency noise and switching ripple. The solution of A/D sampling keeps away from the switching point. Because the PWM duty is changed from 5% to 95%, we can#t decide a fixed sampling time. In this paper, the three A/D converters of the DSP are started using the prediction algorithm for the FET ON/OFF time at every sampling cycle(40 KHz). Implemented A/D sampling algorithm with only one timer of the DSP is very simple and gives the autostart of these A/D converters. From the experimental result, it was shown that the power factor was about 0.99 at wide input voltage, and the output ripple voltage was smaller than 5 Vpp at 80 Vdc output. Finally the parameters and gains of PI controllers are controlled by serial communication with Windows Xp based PC. Also it was shown that the implemented PFC converter can achieve the feasibility and the usefulness.

Four Channel Step Up DC-DC Converter for Capacitive SP4T RF MEMS Switch Application (정전 용량형 SP4T RF MEMS 스위치 구동용 4채널 승압 DC-DC 컨버터)

  • Jang, Yeon-Su;Kim, Hyeon-Cheol;Kim, Su-Hwan;Chun, Kuk-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • This paper presents a step up four channel DC-DC converter using charge pump voltage doubler structure. Our goal is to design and implement DC-DC converter for capacitive SP4T RF MEMS switch in front end module in wireless transceiver system. Charge pump structure is small and consume low power 3.3V input voltage is boosted by DC-DC Converter to $11.3{\pm}0.1V$, $12.4{\pm}0.1V$, $14.1{\pm}0.2V$ output voltage With 10MHz switching frequency. By using voltage level shifter structure, output of DC-DC converter is selected by 3.3V four channel selection signals and transferred to capacitive MEMS devices. External passive devices are not used for driving DC-DC converter. The total chip area is $2.8{\times}2.1mm^2$ including pads and the power consumption is 7.52mW, 7.82mW, 8.61mW.

Design and Fabrication of an Electronic Ballast for Short-Arc Lamps (Short-Arc 램프용 전자식 안정기의 설계 및 제작)

  • Kim Il-Kwon;Han Ju-Seop;Kil Gyung-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.652-658
    • /
    • 2006
  • This paper deals with an electronic ballast for hish intensity short-arc discharge lamps, which consists of a boost converter, a step down converter operated as a current source with power regulation and a low frequency inverter with external ignition circuit The ignition circuit generates high voltage pulses of 130[Hz] up to 5 [kV]. A reignition circuit is equipped in the ballast, and it operates the lamp at a regular interval for protection when an ignition fails. Acoustic resonance phenomenon was eliminated by operating a low frequency square wave voltage and current. The measured lamp voltage, current and consumption power were 123.8 [V], 8.1 [A] and 1,002 [W], respectively. From the experiment, we confirmed that the prototype ballast operates the lamp with a constant power.

A Novel Boost DC-DC Converter using High Frequency Coupled Inductor Series Resonant ZCS-PFM Chopper Control Method (고주파 결합 인덕터 직렬 공진형 ZCS-PFM 초퍼 제어 방식을 이용한 새로운 승압형 DC-DC 컨버터)

  • Kim, Hong-Shin;Heo, Young-Hwan;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • This paper proposes a new non-isolated DC conversion circuit topology of the voltage source coupled inductor series resonant high-frequency PFM controlled boost chopper type DC-DC power converter using two in one IGBT power module, which can efficiently operate under a principle of zero current soft switching for wide output regulation voltage setting ranges and wide fluctuation of the input DC side voltage as well as the load variation ranges. Its steady state operating principle and the output voltage regulation characteristics in the open-loop-based output voltage control scheme without PI controller loop are described and evaluated from theoretical and experimented viewpoints. Finally, in this paper the computer-aided simulation steady-state analysis and the experimental results are presented in order to prove the effectiveness and the validity of voltage regulation characteristics of the proposed series resonant zero current soft switching boost chopper type DC-DC power converter circuit using IGBTs which is based on simple pulse frequency modulation strategy more than, 20kHz.