• Title/Summary/Keyword: 습윤건조실험

Search Result 91, Processing Time 0.028 seconds

Time-dependent Behaviors of Concrete Exposed in the 100% Relative Humidity (상대습도 100% 환경에 노출된 콘크리트의 시간 의존적 거동)

  • Min, Kyung-Hwan;Kim, Youl-Hee;Jung, Hyung-Chul;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.693-696
    • /
    • 2008
  • In order to assess time-dependent behaviors of the high-strength concrete that applied in actual FCM bridges with various curing environments, the shrinkages of air-dried, sealed, and moist 100${\times}$100${\times}$400 mm prism specimens were measured. And the compressive creep test of 3 and 28 days aged concrete in the tap water and 10% CaCl$_2$ solutions were carried out, then results were compared with traditional test results of air-dried and sealed specimens. Time-dependent behaviors of the concrete that according to curing circumstances between sealed and moist specimens show remarkable differences not only on the shrinkage but also on the creep. Hence there need some reconsiderations to the traditional creep test manners that predicting the creep and shrink age of actual concrete structures.

  • PDF

Study on the Minimum Recursive Reflection Performance according to the Color of Road Surface (노면표시 색상에 따른 최소재귀반사성능 연구)

  • Han, Eum;Kang, Jong Ho;Kim, Cheong Ho;Park, Sungho;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.37-48
    • /
    • 2020
  • Eight colors prescribed by the Enforcement Rules of the Road Traffic Act and the group standard were tested to secure the minimum recursive reflectance performance standards when drying and wetting. The results were calculated to be 260.8 (mcd/㎡·lux) when drying white and 154.6 (mcd/㎡·lux) when wet. Yellow was 67% compared to the white reflective performance when drying. Wet poetry was 79 % and 59 %, respectively. In the case of blue, it was 64% in the case of white versus 72% in the case of white. Wet poetry was 63 % and 72 %, respectively. The range of changes in reflective performance during wetting was higher than when drying, and the absence of glass grains was similar to the previous results. The new colors also have a standard value of more than 50% compared to the white color in red, orange, pink, light green, and green. Based on this, it was estimated that the minimum reflective performance criteria according to the color of the road markings would form the basis for the enforcement rules of the Road Traffic Act.

Estimation on Unsaturated Hydraulic Conductivity Function of Jumoonjin Sand for Various Relative Densities (주문진 표준사의 상대밀도에 따른 불포화 투수계수함수 산정)

  • Song, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2369-2379
    • /
    • 2013
  • The Soil-Water Characteristics Curve (SWCC) is affected by the initial density of soil under unsaturated condition. Also, the characteristic of hydraulic conductivity is changed by the initial density of soil. To study the effect of initial density of unsaturated soil, SWCC and the Hydraulic Conductivity Function (HCF) of Jumoonjin sand with various relative densities, 40%, 60% and 75% were measured in both drying and wetting processes. As the results of SWCC estimated by van Genuchten (1980) model, the parameter related to Air Entry Value(AEV), ${\alpha}$ in the wetting process is larger than that in drying process, but the parameters related to the SWCC slope, n and the residual water content, m are larger than those in wetting process. The AEV is increased or Water Entry Value (WEV) is decreased with increasing the relative density of sand. The AEV is larger than the WEV at the same relative density of sand. As the results of HCF estimated by van Genuchten (1980) model which is one of the parameter estimation methods, the unsaturated hydraulic conductivity maintained at a saturated one in the low level of matric suctions and then suddenly decreased just before the AEV or the WEV. The saturated hydraulic conductivity in drying process is larger than that in wetting process. The saturated hydraulic conductivity is decreased with increasing the relative density of sand in both drying and wetting processes. Also, the hysteresis in unsaturated HCFs between drying and wetting process was occurred like the hysteresis in SWCCs. According to the test results, the AEV on SWCC is decreased and the saturated hydraulic conductivity is increased with increasing the initial density. It means that SWCC and HCF are affected by the initial density in the unsaturated soil.

Dynamic Characteristics of Decomposed Granite Soils by Changing Geoenvironment (지반환경 변화에 따른 화강토의 동적특성)

  • Lee, Jin-Soo;Lee, Kang-Il;Kim, Kyung-Jin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.41-52
    • /
    • 2014
  • Decomposed granite soil is likely to lose its strength when exposed to air or water. Such a geomaterial is weathered by wetting-drying or freezing-melting. In this study, resonant column tests were conducted to figure out the dynamic characteristics of granite soil that has affected by environmental changes like weathering condition. The results show that wetting-drying weathering condition is the most affective parameter on the dynamic characteristics of granite soil. In the meantime, artificial weathering conditions such as freezing-melting has less affection at first and getting increase as the process repeats constantly.

Experimental Study on Reducing Effect for Surface Temperature of Recycled Synthetic-Resin Permeable Block (재생 합성수지 투수블록의 표면온도 저감효과에 관한 실험적 연구)

  • Lee, Chul-Hee;Lee, Arum;Shin, Eun-Chul;Ryu, Byung-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.79-89
    • /
    • 2019
  • The field measurement and laboratory experiment were conducted to investigate the effect of reducing the surface temperature of the functional aspect of the heat island phenomenon of the permeable block which is made the recycled synthetic resin rather than the existing concrete permeable block. Field measurement was taken for 3 days in consideration of dry condition and wet condition and laboratory experiment was divided into dry condition, rainfall simulating condition, and wetting condition. The variations of temperature and the evaporation rate of water moisture content after experiment were confirmed. As a result of field measurement, it is confirmed that the surface temperature decreases due to the difference in albedo of the pore block surface rather than the cooling effect due to the latent heat of vaporization. The evaporation of moisture in a dry state where drought persisted or a certain level of moisture was not maintained in the surface layer. As a result of laboratory experiment, resin permeable block gives higher surface temperature when it is dry condition than concrete permeable block, but the evaporation of water in the pore is kept constant by capillary force in rainfall simulation condition, and higher temperature reduction rate. As a result of measuring the evaporation rate after laboratory experiment, it is confirmed that the effect of reducing temperature is increased as the evaporation rate of water is higher. Based on these results, correlation formula for evaporation rate and temperature reduction rate is derived.

Experimental Study on the Hysteresis of Suction Stress in Unsaturated Sand (불포화 모래의 흡입응력 이력현상에 대한 실험적 연구)

  • Song, Young-Suk;Choi, Jin-Su;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.145-155
    • /
    • 2012
  • The matric suction and volumetric water content of Jumunin standard sand with a relative density of 60% were measured using an Automated Soil-Water Characteristic Curve (SWCC) apparatus during both drying and wetting processes. The test time for the drying process was longer than that for the wetting process, because the flow of water is likely to be protected by air trapped in voids within the soils during the drying process. Based on the matric suction and volumetric water content, the SWCC was estimated using the model proposed by van Genuchten (1980). For the drying process, the unsaturated fitting parameters ${\alpha}$, n, and m were 0.399, 8.586, and 0.884, respectively; for the wetting process, the values were 0.548, 5.625, and 8.220, respectively. The hysteresis phenomenon occurred in the SWCCs, which means the SWCC of the drying process is not matched with the SWCC of the wetting process. Using these unsaturated parameters, we estimated the Suction Stress Characteristic Curve (SSCC), based on the relationship between suction stress and the effective degree of saturation. The suction stress showed a rapid decrease when the matric suction exceeds the Air Entry Value (AEV). Therefore, the effective stress of unsaturated soils is different from that of saturated soils when the matric suction exceeds the AEV. The suction stress of the drying process exceeds that of the wetting process for a given effective degree of saturation. The hysteresis phenomenon was also recognized in SSCCs. The hysteresis phenomenon of SSCCs arises from that of SWCCs, which is induced by the ink bottle effect and the contact angle effect. In the case of a sandy slope, the suction stress is positive and acts to enhance the slope stability as the water infiltrates the ground, but is negative when the suction stress exceeds the AEV. The results obtained for the wetting process should be applied in analyses of slope stability, because the process of water infiltration into ground is similar to the wetting process.

Determination of the Soil-water Characteristic Curve Using the Flow Pump Technique (피스톤 펌프 기법을 이용한 흙-수분 특성곡선 측정방법)

  • 황창수;김태형
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.155-162
    • /
    • 2003
  • The soil-water characteristic curve (SWCC) represents the essential constitutive relationship for solving various problems in unsaturated soil mechanics. A reliable and convenient experimental method is needed for the determination of the SWCC in engineering applications. This study introduces and proves that the suction-saturation experimental measurement based on the flow pump technique is a convenient and accurate method for obtaining the SWCC. The flow pump technique provides complete control over the test conditions and is capable of detecting all the important elements of the SWCC. In particular, it is capable of defining continuous drying and wetting curves, the moment of air occlusion, and the hysteretic behavior of unsaturated soils. Not only the optimal testing procedure but also the analysis technique for the flow pump technique has been established in this study. Especially, the method of the suction drop measurement was developed to measure the SWCC. This method is a convenient and time saving method without losing accuracy.

Determination of Density of Saturated Sand Considering Particle-fluid Interaction During Earthquake (입자-유체 상호거동을 고려한 지진시 포화 모래지반의 밀도 결정)

  • Kim, Hyun-Uk;Lee, Sei-Hyun;Youn, Jun-Ung
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.41-48
    • /
    • 2022
  • The mass density of the medium (ρ) used to calculate the maximum shear modulus (Gmax) of the saturated ground based on the shear wave velocity is unclear. Therefore, to determine the mass density, a verification formula and five scenarios were established. Laboratory tests were conducted, and the obtained results were compared. The mass density of the medium was assumed to be saturated (ρsat), wet (ρt), dry (ρdry), and submerged conditions (ρsub), and the Vs ratios of saturated to dry condition were obtained from each case. Assuming the saturated density (ρsat), the Vs ratio was consistent with the value from the resonant column test (RCT) results, and the value from the bender element test results was consistent with the wet density assumption (ρt). Considering the frequency range of earthquakes, it is concluded that applying the saturated density (ρsat) is reasonable as in the RCT results.

Influence of Curing Methods on Compressive Strength and Shrinkage of High Strength Mortar with High Volume SCMs (양생방법 변화가 혼화재 다량치환 고강도 모르타르의 압축강도 및 수축변화에 미치는 영향)

  • Han, Cheon-Goo;Baek, Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.33-40
    • /
    • 2018
  • Currently, in South Korea, because of reducing the construction period or treating wasted water, there are some cases of missing wet curing for concrete structure even though for high strength concrete. This air curing conditions is considered to cause increased possibility of compressive strength decrease, and increasing drying or autogenous shrinkages. As a solution of shrinkage of concrete, The authors' research team conducted the research on improving durability of concrete with decreasing autogenous shrinkage by adding the oil or fat to induce the saponification. Therefore, in this research, the influence of curing method on compressive strength, shrinkage on evaporation rate of high strength mortar including high volume supplementary cementitious materials (SCMs) was evaluated depending on various curing methods such as air curing, drying after painting emulsified refined cooking oil (ERCO), and drying after 7 and 28 days' wet curing. The experimental result showed the air curing method caused approximately 50% of decreased compressive strength and 1.9 times of increased shrinkage rather than the 28-day-wet curing method, thus it was known that the wet curing significantly influences on performance of high strength mortar using high volume SCMs. However, the ERCO painting curing caused decreased performance of concrete rather than drying after 7 days curing while it caused improved performance of concrete than entire period air curing.

Effects of Seed Pre-treatment and Germination Environments on Germination Characteristics of Ligularia fischeri Seeds (종자 전처리 및 발아환경에 따른 곰취 종자의 발아특성)

  • Jeon, Kwon Seok;Song, Ki Seon;Kim, Chang Hwan;Yoon, Jun Hyuck;Kim, Jong Jin
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.262-269
    • /
    • 2013
  • This study was carried out in order to examine the germination characteristics of Ligularia fischeri seeds, and it was to develop the more efficient pre-treatment and production system of the seeds. It was performed by two ways - temperature control (10, 15, 20 and $25^{\circ}C$) and shading treatment (Full sunlight, 35%, 50%, 75% and 95% of full sunlight). Seed pre-treatment before the each experiment was carried out by temperature (with low temperature and wetting treatment (LTW) for 0, 15, 30, 45 and 60days) and shading treatment (with drying at room temperature (DRT), drying at low temperature (DLT) and water soaking (WS) for 2 days). Seeds of L. fischeri were, regardless of seed pre-treatment, germinated well at $10^{\circ}C$ and the more temperature went up, the more germination rate went down. As a result of surveying shading treatment, 75% shading with DRT was the highest germination rate (68.1%) and 95% shading with WS was the lowest germination rate (48.6%). It was showed over-growth under 95% shading treatment experiment and withered in the full sunlight. As a result of surveying the whole experiment, L. fischeri seeds pre-treated with LTW for 15 days germinated well at $10^{\circ}C$ and under 50~75% shading treatment.