• 제목/요약/키워드: 습식제련

검색결과 45건 처리시간 0.024초

리튬이온전지 재활용공정 효율 향상을 위한 공정개선 연구동향 (The Enhancement of Recycling Processes Efficiency of Lithium Ion Batteries; A Review)

  • 유경근;허원화;김범중
    • 자원리싸이클링
    • /
    • 제33권2호
    • /
    • pp.24-36
    • /
    • 2024
  • 리튬이온전지 재활용 공정은 직접 재활용, 습식제련공정, 건식제련공정으로 분류되어 왔으며, 습식제련공정 기반 상용공정은 해체, 파분쇄, 열처리, 선별 등으로 구성된 전처리 공정으로 블랙매스를 생산하고 습식제련공정으로 각 금속을 회수한다. 개발 중인 모든 리튬이온전지 재활용공정은 전구체 원료 제조를 위해 전처리공정 후 침출 등의 습식제련공정을 진행하기 때문에 이 글에서는 재활용공정의 전처리공정에 따른 분류법을 제시하였다. 현재 개발 중인 주요 공정은 황산염배소, 탄소열환원, 합금제조 등이며, 전처리공정에서 미이용 부산물의 활용이 가능할 경우 리튬이온전지 재활용 공정의 경제성 향상이 가능하리라 판단된다.

뉴칼레도니아산 니켈라테라이트광의 분급 연구 (A Study on Classification of Limonite and Saprolite from Nickel Laterite Ores)

  • 서주범;김기석;배인국;이재영;김형석
    • 자원리싸이클링
    • /
    • 제25권1호
    • /
    • pp.40-47
    • /
    • 2016
  • 니켈 산화광인 라테라이트광은 건식제련 원료인 사프로라이트광과 습식제련 원료인 리모나이트광으로 구성되어 있다. 사프로라이트광이 혼재된 리모나이트광을 습식제련용으로 사용할 경우 무기산 소모량이 증가할 뿐만 아니라 슬러지 발생량이 증가하여 공정비용을 증가시키는 단점이 발생한다. 이러한 이유로 니켈 리모나이트광은 Si+Mg함량 10% 이하, Fe 함량 40% 이상이어야 습식제련 원료로 사용하기 적합하다. 본 연구에서는 뉴칼레도니아산 니켈 라테라이트광을 대상으로 습식제련 원료인 리모나이트광을 분리선별하는 연구를 수행하였다. 뉴칼레도니아산 니켈라테라이트광의 입도에 따른 광물성분 및 화학성분 변화를 규명하여 분급에 의한 사프로라이트 및 리모나이트의 광물간 분리선별 가능성을 확인하였다. 뉴칼레도니아산 니켈 라테라이트 원광(함수율 23.0%) 및 니켈 라테라이트 건조광(함수율 9.1%)을 핀밀을 이용 해쇄한 후 건식분급한 결과, 니켈 라테라이트광을 함수율 9% 수준으로 건조할 경우 분급효율이 높아지는 것을 확인하였다.

원광석 및 2차 자원으로부터 텅스텐 습식 제련 기술 (Hydrometallurgical Processes for the Recovery of Tungsten from Ores and Secondary Resources)

  • 안형훈;이만승
    • 자원리싸이클링
    • /
    • 제27권6호
    • /
    • pp.3-10
    • /
    • 2018
  • 텅스텐은 고융점금속으로 주로 초경합금으로 사용되고 있다. 알칼리용액에서 텅스텐은 $WO{_4}^{2-}$로 존재하는데 용액의 pH가 감소함에 따라 중합반응이 일어나며 텅스텐산으로 침전된다. 따라서 원광석 및 2차 자원으로부터 텅스텐 회수를 위한 습식 제련 기술은 산침출과 알칼리침출로 대별된다. 2차 자원에 함유된 금속의 종류와 함유량 및 텅스텐의 소재화를 고려해서 2차 자원으로부터 텅스텐을 고순도로 회수하기 위한 공정을 선택해야 한다.

제강분진으로부터 습식제련공정에 의한 황산아연의 제조 연구 (Study for Manufacturing of Zinc Sulfate from Electric Arc Furnace Dust by Hydrometallrugical Process)

  • 신동주;주성호;이동석;신선명
    • 자원리싸이클링
    • /
    • 제32권1호
    • /
    • pp.33-41
    • /
    • 2023
  • 본 연구에서는 제강분진으로부터 습식제련을 이용하여 아연을 선택적으로 회수하고 황산아연을 제조하고자 하였다. 제강분진의 성상분석을 통해 기존의 제강분진과 다르게 철의 함유량이 9.9%로 상대적으로 낮고 망간이 19%로 다량 함유되어 있었으며 이에 알맞은 습식제련 공정을 설계하였다. 침출공정에서는 고액비, 온도, 황산 농도별 실험을 통해 1.6M 황산, 20% 고액비, 60℃, 1시간동안 침출하여 85%의 아연, 망간을 용해시키고 철은 침출되지 않았다. 망간으로부터 아연을 선택적으로 회수하기 위해 D2EPHA를 사용한 용매추출 공정을 선택하였고 0.8M D2EHPA, 32% 비누화도, O/A 비 2, 향류 3단 추출을 통해 에서 99% 아연을 추출하였으며, 공동 추출된 망간은 pH 1.5로 조정한 황산 수용액으로 전량 세정하였다. 최종적으로 1.5M 황산을 이용하여 O/A 비 4, 향류 4단 탈거를 통해 아연을 농축 탈거하였다. 탈거액에는 40g/L의 아연이 함유되어 있었으며 이를 감압증류하여 99.9%의 황산아연 1수화물을 획득하였다.

아연의 제련 및 리사이클링 현황 (Current Status of Zinc Smelting and Recycling)

  • 손호상
    • 자원리싸이클링
    • /
    • 제28권5호
    • /
    • pp.30-41
    • /
    • 2019
  • 아연의 전세계 생산량은 약 1,300만 톤 정도이며, 철, 알루미늄, 구리에 이어서 네 번째로 많이 사용되는 금속이다. 아연을 리사이클링하여 2차지금을 생산하는 경우 광석으로부터 1차지금을 생산하는데 필요한 에너지의 약 75 %를 절약할 수 있으며, $CO_2$ 발생량은 약 40 %를 절감할 수 있다. 그러나 아연의 주 용도가 철강재의 도금용이기 때문에 아연의 리사이클링율은 약 25 % 수준으로 다른 금속보다 낮은 수준이다. 아연의 리사이클링 원료에는 제강분진, 황동 제조시에 발생하는 분진, 비철금속의 제조공정에서 발생하는 슬러지, 아연 잉곳의 재용해나 용융아연도금을 할때 생성되는 드로스, 폐건전지, 그리고 금속성 스크랩 등이 있다. 제강분진과 폐건전지가 가장 활발하게 리사이클링 되고 있다. 이러한 리사이클링 공정의 대부분은 건식제련법을 응용하고 있으나, 최근에는 건식과 습식의 복합처리에 관해서도 많은 관심이 주어져 있다.

니켈 제련기술의 현황 (Current Status of Nickel Smelting Technology)

  • 손호상
    • 자원리싸이클링
    • /
    • 제30권2호
    • /
    • pp.3-13
    • /
    • 2021
  • 니켈은 우수한 인성, 전성과 함께 내식성 향상 효과 때문에 널리 사용된다. 따라서 니켈은 우리 일상 생활에서 없어서는 안 될 금속으로, 스테인리스강, 고강도합금, 전자기기 등 기초부터 첨단 응용 분야까지 널리 사용되고 있다. 최근 니켈은 2차 전지 및 커패시터의 주요 소재로 널리 사용되고 있다. 니켈의 사용량은 계속 증가하여 1970년대 전 세계적으로 연간 80만 톤에서 2010년대에는 약 200만 톤으로 증가했다. 그러나, 니켈은 지각 중 원소 존재도에서 23번째로 대표적인 희소금속이다. 본 연구에서는 니켈 제련기술의 현황과 생산량 및 사용 동향에 대해 조사하였다. 니켈은 광석의 종류에 따라 매우 다양한 제련법으로 추출된다. 이러한 다양한 니켈 제련기술은 니켈 2차 자원으로부터 니켈을 추출하는 새로운 재활용 프로세스의 개발에 필수적일 것이다.

인코넬 713C 스크랩으로부터 니켈 자원 회수를 위한 습식제련 기반 재활용공정 연구 (A Study on the Recycling Process of Nickel Recovery from Inconel 713C Scrap based on Hydrometallurgy)

  • 김민석;김리나;정경우;안종관
    • 자원리싸이클링
    • /
    • 제33권4호
    • /
    • pp.36-46
    • /
    • 2024
  • 니켈계 내열합금인 인코넬 713C 스크랩으로부터 니켈을 회수하는 습식제련 기반 재활용공정을 연구하였다. 개발공정은 i) 고온전처리 스크랩의 파분쇄, ii) 황산침출, iii) 미반응 산, 몰리브데늄, 알루미늄의 용매추출과 크롬의 침전분리, iv) 진공증발결정화를 통한 황산니켈 제조, 그리고 v) 니켈의 전해채취 순서로 진행되었다. 75 #x339B; 이하로 용이하게 파분쇄가 가능한 니켈-알루미늄 금속간화합물(Ni2Al3)를 건식제련 전처리로 제조하고 황산침출에 사용하였다. 황산 농도 2 mol/L, 고액비 20 g/L, 침출 온도 80 ℃ 조건에서 2시간 동안 침출을 실시하여 몰리브데늄은 28 %, 니켈과 알루미늄은 98 % 이상의 침출율을 얻었다. 침출액으로부터 황산니켈을 회수하기 위하여 용매추출과 침전법을 활용하여 몰리브데늄, 알루미늄은 99 % 이상, 크롬은 93 % 제거하고 2.34 g/L 농도의 황산니켈 수용액을 얻었다. 이의 진공증발결정화를 통해 얻어진 황산니켈수화물을 이용해 니켈 전해채취를 실시하여 99.9 % 순도의 금속 니켈을 제조하였다. 이때 음극 전해액 pH 조절을 위해 음이온 교환막이 장착된 전해셀을 이용하였으나 교환막은 기대한 원리대로 작동하지 않았으며 이에 따라 73.3 %의 낮은 전류효율을 나타내었다.

납의 제련 및 리사이클링 현황 (Current Status of Lead Smelting and Recycling)

  • 손호상
    • 자원리싸이클링
    • /
    • 제28권4호
    • /
    • pp.3-14
    • /
    • 2019
  • 납은 현대산업에서 범용적으로 사용되는 비철금속이다. 전세계의 납 생산량은 1970년대의 약 500만 톤에서 점차 증가하여 2010년대에는 1,100만 톤까지 이르렀다. 특히 납은 품질의 저하없이 100 % 리사이클링할 수 있는 금속으로, 납 스크랩을 리사이클링하면 1차 지금 생산과 비교하여 에너지 및 환경부하를 현저하게 저감할 수 있다. 이러한 이유로 전세계 납 사용량의 약 60 %는 리사이클링으로부터 공급되고 있다. 주로 납축전지인 납 스크랩은 1차 제련소나 2차제련소에서 정련하고 있다. 대부분의 2차 제련은 용광로와 같은 샤프트로, 회전로, 그리고 반사로에서 이루어 지고 있다. 2차 제련에서 생산된 조연은 잉곳으로 주조하거나 케틀로에서 재용해하여 정제를 하지만, 용융상태의 조연에서 곧바로 정련을 하기도 한다. 본 연구에서는 납의 1차지금 생산 및 리사이클링 공정에 대해 고찰하였다.