• Title/Summary/Keyword: 습식산화

Search Result 227, Processing Time 0.028 seconds

Wet Co-Oxidation of Quinoline and Phenol (퀴놀린-페놀 혼합용액의 습식산화)

  • Ryu, Sung Hun;Yoon, Wang-Lai;Suh, Il-Soon
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.486-492
    • /
    • 2009
  • Wet oxidations (WO) of quinoline in aqueous solution were carried out at $225^{\circ}C$ and $250^{\circ}C$. In the WO at $250^{\circ}C$, quinoline was degraded completely within 30 min and the reduction in total organic carbon (TOC) of 63% was achieved during 120 min. However, the rate of the reduction in TOC was only 13% within 240 min during the WO at $225^{\circ}C$. Nicotinic and acetic acid were found to be main intermediates formed during the oxidation of quinoline. With the addition of the homogeneous catalyst $CuSO_4$ or more easily oxidizable phenol, WOs of quinoline were also carried out under moderate conditions at $200^{\circ}C$. The catalytic WO with $CuSO_4$ of 0.20 g/L showed the destruction rates of quinoline and TOC comparable to those in the WO at $250^{\circ}C$. The WOs of quinoline-phenol mixture exhibited induction periods to degrade quinoline and phenol during which free radicals were produced to initiate WOs. With increasing initial concentrations of phenol at a given initial concentration of quinoline, the induction periods in the destructions of quinoline and phenol became shorter and the reduction in TOC increased from 60% to 75% during 180 min of the WOs. The reduction rate of an induction period decreased as increasing the initial concentration ratio of phenol to quinoline. On the other hand, phenol degradation in the WOs of quinoline-phenol mixtures required a longer induction period and proceeded slower compared to the case of the WO of phenol.

Integrated Wet Oxidation and Aerobic Biological Treatment of the Quinoline Wastewater (퀴놀린 폐수의 습식산화와 호기성 생물학적 통합처리)

  • Kwon, S.S.;Moon, H.M.;Lee, Y.H.;Yu, Yong-Ho;Yoon, Wang-Lai;Suh, Il-Soon
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.245-250
    • /
    • 2008
  • The treatment of a model wastewater containing quinoline in an integrated wet oxidation-aerobic biological treatment was investigated. Partial wet oxidation under mild operating conditions was capable of converting the original quinoline to biodegradable organic acids such as nicotinic, formic and acetic acid, the solution of which was subjected to the subsequent aerobic biological treatment. The wet oxidation was carried out at 250$^{\circ}C$ and the initial pH of 7.0, and led to effluents of which nicotinic acid was oxidized through 6-hydroxynicotinic acid by a Bacillus species in the subsequent aerobic biological treatment. Either homogeneous catalyst of $CuSO_4$ or phenol, which is more degradable in the wet oxidation compared to quinoline, was also used for increasing the oxidation rate in the wet oxidation of quinoline at 200$^{\circ}C$. The oxidation of quinoline in the catalytic wet oxidation and the wet co-oxidation with phenol resulted in effluents of which nicotinic acid was biodegradable earlier in the aerobic biological treatment compared to those out of the non-catalytic wet oxidation at 250$^{\circ}C$. However, the lag phase in the biodegradation of nicotinic acid formed out of the wet oxidation at 250$^{\circ}C$ was considerably shortened after the adaptation of Bacillus species used in the aerobic biological treatment with the effluents of the quinoline wet oxidation.

Study on Elecrtical Characteristics of Gate Oxide with Electrode Materials and Oxidation Ambients (전극 재료와 산화분위기에 따른 게이트 산화막의 전기적 특성에 관한 특성)

  • 정회환;정관수
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.1
    • /
    • pp.18-25
    • /
    • 1995
  • 건식, 습식, 건식/습식 산화분위기로 성장한 게이트 산화막 위에 AI, 인 도핑된 다결정시리콘, 비정질 실리콘/인 도핑된 다결정 실리콘을 증착하여 제작한 금속-산화물-반도체(metal-oxide-semiconductor:MOS)의 전기적 특성을 순간 절연파괴(TZDB), 정전용량-전압(C-V)과 경시절연파괴(TDDB)로 평가하였다. AI 게이트에서 습식산화막과 건식산화막의 평균 파괴전계는 각각 9.0MV/cm, 7.7MV/cm이였고, 습식산화막의 평균 파괴전계가 8.4MV/cm 이였으며, AI 게이트보다 0.6MV/cm 정도 낮았다. 이것은 다결정 실리콘/습식산화막 계면에서 인(phosphorus) 확산으로 다결정 실리콘의 grain 성장과 산화막의 migration에 의한 roughness 증가에 기인한다. 그러나 다결정 실리콘/건식산화막 계면에서 roughness 증가는 없었다. 다결정 실리콘 게이트에서는 건식/습식 산화막이 건식산화막과 습식산화막보다 평균 파괴전계와 절연파괴전하(QBD)가 높았다. 또한 다결정/비정질 실리콘 게이트에서는 습식산화막의 평균 파괴전계가 8.8MV/cm이였으며, 다결정 실리콘 게이트에서보다 0.4MV/cm 정도 높았다. 다결정/비정질 실리콘 구조는 앞으로 VLSI 적용에 있어서 게이트 전극으로 매우 유용할 것이다.

  • PDF

Integrated Wet Oxidation and Aerobic Biological Treatment of the Wastewater Containing High Concentration of Phenol (고농도 페놀 폐수의 습식산화와 호기성 생물학적 통합처리)

  • Choi, Ho-Jun;Lee, Seung-Ho;Yu, Yong-Ho;Yoon, Wang-Lai;Suh, II-Soon
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.244-248
    • /
    • 2007
  • The treatment of a model wastewater containing high concentration, 10 $g/{\ell}$, of phenol in an integrated wet oxidation-aerobic biological treatment was investigated. Partial wet oxidation under mild operating conditions was capable of converting the original phenol to biodegradable organic acids such as maleic acid, formic acid and acetic acid, the solution of which was subjected to the subsequent aerobic biological treatment. The wet oxidation was carried out at 150$^{\circ}C$ and 200$^{\circ}C$ and the initial pH of 1 to 12. The high temperature of 200$^{\circ}C$ and the acidic initial condition in the wet oxidation led to effluents of which biodegradability was higher in the subsequent biological oxidation process, as assessed by chemical oxygen demand (COD) removal. Homogeneous catalyst of $CuSO_4$ was also used for increasing the oxidation rate in the wet oxidation at 150$^{\circ}C$ and initial pH of 3.0. However, the pretreatment with the catalytic wet oxidation resulted in effluents which were less biodegradable in the aerobic biological process compared to those out of the non-catalytic wet oxidation at the same operating conditions.

Wet Oxidation of Phenol with Homogeneous Catalysts (균일촉매를 이용한 페놀의 습식산화)

  • Suh, Il-Soon;Ryu, Sung Hun;Yoon, Wang-Lai
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.292-302
    • /
    • 2009
  • The wet oxidation of phenol has been investigated at temperatures from 150 to $250^{\circ}C$ and oxygen partial pressures from 25.8 to 75.0 bar with initial pH of 1.0 to 12.0 and initial phenol concentration of 10 g/l. Chemical Oxygen Demand COD has bee measured to estimate the oxidation rate. Reaction intermediates have been identified and their concentration profiles have been determined using liquid chromatography. The destruction rate of phenol have shown the first-order kinetics with respect to phenol and the changes in COD during wet oxidation have been described well with the lumped model. The impact of various homogeneous catalysts, such as $Cu^{2+}$, $Fe^{2+}$, $Zn^{2+}$, $Co^{2+}$ and $Ce^{3+}$ ions, on the destruction rate of phenol and COD has also been studied. The homogeneous catalyst of $CuSO_4$ has been found to be the most effective for the destruction of phenol and COD during wet oxidations. The destruction rate of formic acid formed during wet oxidations of phenol have increased as increasing temperature and $CuSO_4$ concentration. The final concentrations of acetic acid which has been formed during wet oxidations and difficult to oxidize have increased with reaction temperature and with decrease in the catalyst load.

$UO_2$ 소결펠렛의 건/습식 산화반응 연구

  • 김익수;이원경;신희성;신영준;노성기
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.805-805
    • /
    • 1995
  • 핵연료저장시설의 화재 등 극단적인 사고조건하에서 $UO_2$ 소결펠렛의 습식산화와 건식산화에 대한 연구를 수행하였다. 손상된 지르칼로이 피복관 속의 $UO_2$ 소결펠렛을 산성분위기의 습윤조건하에서 산화시킬 때의 $UO_2$ 펠렛의 산화속도는 IDR(mg/$\textrm{cm}^2$.min) = 1.55 [H$^{+}$]$^{1.21}$ 로 나타났다. 또한 습윤조건하에서 $UO_2$ 분말에 알카리 및 알카리 토금속 산화물, 그리고 백금족 및 회토류 산화물 등과 같은 불순물들이 존재할 때의 산화속도를 조사하였으며 이들에 대한 영향도 관찰하였다. 핵연료저장시설의 가상화재를 바탕으로 한 400~$700^{\circ}C$의 온도범위에서, 피복관이 씌워진 $UO_2$ 소결펠렛의 건식산화반응을 조사한 바 $UO_2$ 소결펠렛은 산화초기에 U$_4$O$_{9}$ 또는 U$_3$O$_{7}$ 등의 중간상 형성에 따른 3-4%의 부피축소에 의해 결정립계 균열이 일어나고, $600^{\circ}C$ 이하에서는 온도증가에 따라 중간상에서 U$_3$O$_{8}$ 상으로의 상변화에 의한 부피팽창으로 피복관의 변형과 함께 산화속도의 가속을 발견할 수 있었고, $600^{\circ}C$ 이상에서는 핵연료소자의 소성변형으로 인한 산화속도의 지연을 발견할 수 있었다. 또한 $UO_2$ 펠렛의 건식산화거동은 기체-고체 반응시의 전형적인 형태인 shrinking core model에 잘 적용될 것으로 판단되었다.

  • PDF

A Study on Characteristics of Wet Oxide Gate and Nitride Oxide Gate for Fabrication of NMOSFET (NMOSFET의 제조를 위한 습식산화막과 질화산화막 특성에 관한 연구)

  • Kim, Hwan-Seog;Yi, Cheon-Hee
    • The KIPS Transactions:PartA
    • /
    • v.15A no.4
    • /
    • pp.211-216
    • /
    • 2008
  • In this paper we fabricated and measured the $0.26{\mu}m$ NMOSFET with wet gate oxide and nitride oxide gate to compare that the charateristics of hot carrier effect, charge to breakdown, transistor Id_Vg curve, charge trapping, and SILC(Stress Induced Leakage Current) using the HP4145 device tester. As a result we find that the characteristics of nitride oxide gate device better than wet gate oxide device, especially hot carrier lifetime(nitride oxide gate device satisfied 30 years, but the lifetime of wet gate oxide was only 0.1 year), variation of Vg, charge to breakdown, electric field simulation and charge trapping etc.

Catalytic Wet Oxidation of Azo Dye Reactive Black 5 (아조염료 Reactive Black 5 폐수의 촉매습식산화)

  • Suh, Il-Soon;Yoo, Shin-Suk;Ko, Mi-So;Jeong, Samuel;Jung, Cheol-Goo;Hong, Jeong-Ah;Yoon, Wang-Lai
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.259-267
    • /
    • 2010
  • The catalytic wet oxidations of the wastewater containing azo dye Reactive Black 5(RB5) with heterogeneous catalyst of CuO have been carried out to investigate the effects of temperature($190{\sim}230^{\circ}C$) and catalyst concentration(0.00~0.20 g/l) on the removals of colour and total organic carbon TOC. The wastewater colour was measured with spectrophotometer, and the oxidation rate was estimated with TOC. About 90% of colour was removed during 120 min in thermal degradation of the RB5 wastewater at $230^{\circ}C$, while TOC was not removed at all. As increasing reaction temperature and catalyst concentration, the removal rates of colour and TOC increased in the catalytic wet oxidations of RB5 wastewater. The effects of catalyst were already considerable even at 0.01 g CuO/l, while the removal rates of colour and TOC increased negligibly with increasing the catalyst concentration above 0.05 g CuO/l. The initial destruction rates of the wastewater colour have shown the first-order kinetics with respect to the wastewater colour. TOC changes during catalytic wet oxidations have been well described with the global model, in which the easily degradable TOC was distinguished from non-degradable TOC of the wastewater. The impacts of reaction temperature on the destruction rate of the wastewater colour and TOC could be described with Arrhenius relationship. Activation energies of the colour removal reaction in thermal degradation, wet oxidation, and catalytic wet oxidation(0.20 g CuO/l) of the RB5 wastewater were 108.4, 78.3 and 74.1 kJ/mol, respectively. The selectivity of wastewater TOC into the non-degradable intermediates relative to the end products in the catalytic wet oxidations of RB5 wastewater was higher compared to that in phenol wet oxidations.

Effects of Wet Oxidation on the Nitride with and without Annealing (열처리 전후의 질화막에 대한 습식산화의 효과)

  • Yun, Byeong-Mu;Choe, Deok-Gyun
    • Korean Journal of Materials Research
    • /
    • v.3 no.4
    • /
    • pp.352-360
    • /
    • 1993
  • A nitride layer was df'posited on the thermal oxide layer by LPCVD process. ONO(oxidenitricle oxide) capacitors with various thickness of component layer wore fabricated by wet reoxidation of the nitride with and without anrwalmg treatment and their properties were investigated. As a result of observation on the refrative index and etching behavior of the ONO fIlms, the nitride layer OF 40 A thick ness was not so dense that the bottom oxide during the reoxidation process and the capability of securing the capacitance decreased. The conduction current in the ONO multl-Iayer dielctric film was reduced as the bottom(or top) oxide layer became thicker. However, in the case of oxide with thickness more than 50A, it merely plays a factor of reduction in capacitance, and the effect of barrier for hole injection was not so much increased. Annealing of the nitride laypr bpfore reoxidation did not show a grpat effects on the refractive index and capacitance of the film, however, the annealing process increased the breakdown voltage by 2${\cdot}$V.

  • PDF

Synthesis and Characterization of $In_2O_3$ Nanowires in a Wet Oxidizing Environment (습식 산화 분위기에서의 산화 인듐 나노선의 합성 및 구조적 특성)

  • Jeong, Jong-Seok;Kim, Young-Heon;Lee, Jeong-Yong
    • Applied Microscopy
    • /
    • v.33 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • Indium oxide ($In_2O_3$) nanowires were successfully synthesized by a simple reaction in a wet oxidizing environment at low temperature without metal catalyst. The nanowires were characterized by an x-ray diffraction (XRD), a scanning electron microscopy (SEM) equipped with an energy dispersive spectrometry (EDS), and a transmission electron microscopy (TEM). It was shown that the $In_2O_3$ nanowires were two types of morphology, uniform nanowires and nanowires containing $In_2O_3$ nanoparticles in its stem. It was found that lengths of the nanowires were ranges of several micrometers and their diameters were around $10{\sim}250$ nm. The growth direction of the nanowires was investigated and their growth mechanism is also discussed.