• Title/Summary/Keyword: 슬릿노즐

Search Result 18, Processing Time 0.021 seconds

A study on the spray characteristics of a coaxial nozzle by LDV measurement (LDV계측에 의한 동축노즐의 분무특성 연구)

  • 윤석주;노병준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1613-1620
    • /
    • 1990
  • For the purpose of the study on the spray characteristics of a coaxial nozzle, the measurement of the velocity and size of droplets, concentration, and the statistical correlation coefficient between the fluctuation of the velocity and that of the corresponding drop diameter have been carried out. Various method of simultaneous measurement of velocity and drop size have been developed from LDV techniques. The technique used here belongs to the method that supposed by Yule, Holve and Self. It has the advantages of making use of a standard LDV apparatus to which minor modifications have been brought, photomultiplier is equipped with a slit instead of a pinhole and observed the measuring volume at an angle of 90.deg.. The voltage supplied by the photomultiplier has undergone an appropriate analog and digital processing. The experimental results give a good idea of the two phase flow organization and can be helpful to find a drop diffusion model when suitable data are imput.

슬릿 코터 노즐의 최적 설계 및 고속도포 공정의 적용 가능성에 대한 연구

  • Kim, Tae-Min;Kim, Gwang-Seon;Kim, Gi-Un;Im, Tae-Hyeon;Jeong, Eun-Mi
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.169-173
    • /
    • 2007
  • Slit-coater nozzle is one of core equipments of coating process in LCD panel manufactory. As a glass substrate size become bigger, a nozzle performance and a high-speed coating process are considered important issues. To design the optimal nozzle, the characteristics of fluid inside nozzle are studied using CFD (Computational Fluid Dynamics) method. Through research on design factors, we can know the coating uniformity influenced by lip length, cavity angle and gap size. The future work for this study is to find the factors in high-speed coating process and function between factors of design.

  • PDF

Generation and fluorescence measurement of HF* molecules excited by combustion of fluorine and hydrogen (불소-수소 연소 열을 이용한 들뜬 상태 HF* 분자의 생산 및 형광 측정)

  • 최윤동;권성옥;김택숙;김성훈;김응호;김철중
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.3
    • /
    • pp.153-157
    • /
    • 2001
  • Operation conditions for the generation of an HF laser driven by fluorine-hydrogen combustion were discussed by mc:asuring the intensities of excited HF* molecules. Optimum injection quantities of fluorine gas for the generation of fluorine atoms was two times the injection mole number of hydrogen fuel. Slit nozzles with two dimensional configuration were used for the production of excited HF* molecules. When the injection mole number of secondary hydrogen gas is 1.3 times the injection mole number of fluorine gas, the fluorescence intensities of excited HF* molecules show maximum values. alues.

  • PDF

Effects of the Carrier-gas Flow-rate on the Combustion Characteristics of the Ultrasonically-atomized Slit-jet Flame (초음파에 의해 무화된 슬릿제트화염의 연소특성에 대한 수송기체 유량의 영향)

  • Kim, Min Sung;Bae, Dae Seok;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.9-16
    • /
    • 2016
  • An experimental study was performed to investigate the combustion characteristics of the liquid hydrocarbon fuel atomized by an ultrasonic oscillator. Configuration of the flame was caught by the high-speed camera, and images were analyzed in detail through a post-processing. In addition, the fuel consumption was measured using the balance during the combustion reaction. As a result, the consumption of atomized fuel increased with the increasing flow-rate of carrier-gas, but any correlation between the air/fuel ratio and carrier-gas flow-rate was not found. The variation of flame area was dependent on the fuel consumption and input power of the ultrasonic oscillator. FFT (Fast Fourier Transform) analyses using the flame area were conducted in order to discuss flame flickering.

A Numerical Analysis of Flow Field in the Silt Nozzle During Cold Spray Coating Process (저온분사 코팅공정에서 초음속 슬릿노즐 사용시 유동장 해석)

  • Park, Hye-Young;Park, Jong-In;Jung, Hun-Je;Jang, Kyoung-Soo;Baek, Ui-Hyun;Han, Jeong-Whan;Kim, Hyung-Jun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.221-230
    • /
    • 2011
  • The cold spray process is an emerging technology that utilizes high velocity metallic particles for surface coating. Metallic powder particles are injected into a converging-diverging de Laval nozzle and accelerated to a high velocity by a supersonic gas flow. The cold spray process normally uses a circular nozzle that has a rather narrow spraying range. To overcome this fault, a slit nozzle was considered in this study. The slit nozzle is anticipated to reduce the coating process time because it has a wider coating width than the circular nozzle. However, the slit nozzle can reduce the coating efficiency because it does not allow as much gas and particle velocity as the circular nozzle. To improve the coating efficiency of a slit nozzle, the shape of the slit nozzle was modified. And the results of gas flow and particle behaviour according to the nozzlers shape were compared by the a numerical analysis. As a results, as Expansion Ratio(ER) of 7.5 was found to be the most optimal condition for enhancing the spraying efficiency when the ER was changed by the variation of nozzle neck and exit size.

A Behavior of the Ultrasonically-atomized Kerosene Lifted-flame According to the Position of Ultrasonic Standing-wave Field (정상초음파장의 위치에 따른 초음파 무화 케로신 부상화염의 거동)

  • Chang Han Bae;Jeong Soo Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • A study was conducted to scrutinize the behavior of the ultrasonically-atomized kerosene lifted-flame according to the carrier gas flow-rate and position of ultrasonic standing wave (USW). The combustion region of the kerosene-aerosol generated through a slit-jet nozzle was visualized using a DSLR, ICCD, high-speed camera, and Schlieren technique, and the fuel consumption was measured by using a precision balance. As a result, the flame was confined within the region bounded by the USW-field, and the fuel consumption decreased as the position of the USW field increased.

Combustion Characteristics of CH4 Nonpremixed Flame with Recession Distance (메탄 비예혼합 화염의 후퇴거리에 따른 연소특성)

  • Kim, Jun-Hee;Ku, Kun-Woo;Hong, Jung-Goo;Lee, Choong-Won;Kim, In-Su;Cheong, In-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.285-291
    • /
    • 2012
  • A lot of research on the stability of nonpremixed flames has focused on the fuel-nozzle and quarl geometries. Of the work carried out, only a small amount has focused on the stability of the nonpremixed flame according to the recession distance and air-nozzle geometry. Therefore, in this study, a coaxial-diffusion-type gas burner with a swirler is designed for the systematic investigation of the combustion characteristics of a $CH_4$ flame depending on the recession distance and secondary air-nozzle geometry. 1st air is flowed through the swirler, and 2nd air is flowed through each nozzle. It is shown that the secondary air velocity greatly influences the flame length and shape. There is an optimum recession distance for each nozzle for the best combustion efficiency. In this study, it is shown that the optimized recession distance is nearly half the outer diameter of the air-supply nozzle.

Study on Correlation Between the Internal Pressure Distribution of Slit Nozzle and Thickness Uniformity of Slit-coated Thin Films (슬릿 노즐 내부 압력 분포와 코팅 박막 두께 균일도 간의 상관관계 연구)

  • Gieun Kim;Jeongpil Na;Mose Jung;Jongwoon Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.19-25
    • /
    • 2023
  • With an attempt to investigate the correlation between the internal pressure distribution of slit nozzle and the thickness uniformity of slot-coated thin films, we have performed computational fluid dynamics (CFD) simulations of slit nozzles and slot coating of high-viscosity (4,800 cPs) polydimethylsiloxane (PDMS) using a gantry slot-die coater. We have calculated the coefficient of variation (CV) to quantify the pressure and velocity distributions inside the slit nozzle and the thickness non-uniformity of slot-coated PDMS films. The pressure distribution inside the cavity and the velocity distribution at the outlet are analyzed by varying the shim thickness and flow rate. We have shown that the cavity pressure uniformity and film thickness uniformity are enhanced by reducing the shim thickness. It is addressed that the CV value of the cavity pressure that can ensure the thickness non-uniformity of less than 5% is equal to and less than 1%, which is achievable with the shim thickness of 150 ㎛. It is also found that as the flow rate increases, the average cavity pressure is increased with the CV value of the pressure unchanged and the maximum coating speed is increased. As the shim thickness is reduced, however, the maximum coating speed and flow rate decrease. The highly uniform PDMS films shows the tensile strain as high as 180%, which can be used as a stretchable substrate.

  • PDF