• Title/Summary/Keyword: 슬러지 활성도

Search Result 468, Processing Time 0.023 seconds

The effect of zeolite addition on floc in activated sludge process (제올라이트 주입이 활성슬러지 플럭에 미치는 영향)

  • Lee, Hyung Sool;Park, se Jin;Yoon, Tae Il
    • Clean Technology
    • /
    • v.7 no.1
    • /
    • pp.35-42
    • /
    • 2001
  • This study was performed to evaluate the effect of zeolite addition on biofloc in aictvated sludge process. Two units were compared each other, in which one was operated as control unit (CU) and the other was managed by adding zeolite into aeration basin to sustain 4,000 mg/l (ZU). It was observed that flocs of both units were enduringly increased in medium size by extending SRT (Solid Retention Time), although their effect size of ZU was smaller than theirs of CU. Zeolite application excessively improved sludge settling property and ZU presented sludge settling velocity of 3.4 to 11 m/h regardless of SRT variation. The sludge volume index (SVI) was in the range of 50 and 108 ml/g. Conversely, the sludge settling velocity of CU seriously depended on SRT increase, and sludge sedimentation was not achieved at a 40 days of SRT due to Sphaerotilus appeared predominantly in reactor.

  • PDF

The investigation of clindamycin biodegradation in nitrifying activated sludge (질산화 활성슬러지 내에서의 클린다마이신 항생제 생분해)

  • Cho, Yun-Chul;Kim, Lee-Hyung;Kim, Sung-Pyo
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.129-137
    • /
    • 2011
  • The aim of this study is to evaluate the biodegradability of the micro-contaminant, clindamycin antibiotic, under nitrifying activated sludge (AS) condition. Based on the short-term clindamycin degradation batch test at an environmentally relevant concentration (10 ppb), clindamycin disappearance half-life ($t_{0.5}$) was estimated to be 9.1hrs under nitrification condition. However, biodegradation was slower (26.1 hrs) when nitrification was inhibited. Also, one clindamycin metabolite was detected under nitrification condition, but not under inhibited nitrification condition. Based on the mass spectra, the metabolite is suspected to be clindamycin-sulfoxide (m/z 441), which is known to have antimicrobial activity. The metabolite was not degraded during the long term batch study, suggesting that under the conditions tested, biodegradation of clindamycin in activated sludge systems is ineffective.

Effect on nitrogen removal in the intermittent aeration system with the anaerobic archaea added (혐기성 아키아 주입이 간헐폭기 시스템에서 질소제거에 미치는 영향)

  • Lee, Sang-Hyung;Park, Noh-Back;Park, Sang-Min;Jun, Hang-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1186-1192
    • /
    • 2005
  • The relationship between bacteria and anaerobic archaea, sludge yield coefficient and nitrogen removal rate were investigated in intermittent aeration systems(I/A) with added archaea, I/A and conventional activated sludge system. As the archaea solution was added to the I/A reactor, organic removal rate as well as nitrogen removal rate increased. Also, sludge production rate in I/A system added the archaea was maintained lower than other systems because sludge yield coefficient was decreased due to the role of anaerobic archaea such as anaerobic degradation of organics. The experimental data supported the possibility of symbiotic activated sludge system with anaerobic archaea under intermittent aeration, leading to the enhanced nitrogen removal. Crucial results to be presented are: 1) specific oxygen utilization rate(SOUR) of the I/A-arch system was $2.9\;mg-O_2/(g-VSS{\cdot}min)$. SOUR and nitrification rate of the sludge from the I/A-arch system was higher than those from the I/A and A/S reactors. 2) Removal efficiencies of $TCOD_{Cr}$ in the I/A-arch, I/A and A/S reactors were 93, 90 and 87%, respectively. 3) Nitrification occurred successfully in each reactor, while denitrification rate was much higher in the I/A-arch reactor. Efficiencies of TN removal in the I/A-arch, I/A and A/S reactors were 75, 63 and 33%, respectively.

Study on solubilization of sewage sludge with electrolysis (전기분해 활용 하수슬러지 가용화 연구)

  • Lee, Ji-Sun;Chang, In-Soung;Lee, Chul-Ku;Joung, Seun-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.482-482
    • /
    • 2010
  • 하수처리장에서 발생하는 유기성 슬러지는 대부분 해양투기에 의해 처분되고 나머지는 매립, 소각, 퇴비화 등으로 처분된다. 그러나 런던협약 '96 의정서' 발효에 의해 2012년부터 해양투기가 금지되고, 매립장 및 소각장의 신규건설은 님비(NIMBY) 현상에 의해 제한받기 때문에 효과적인 슬러지 처분 및 가용화 방법이 요구되고 있다. 현재 초음파[1]나 열처리[2], 오존[3,4], 미생물 처리[5,6] 등 물리, 화학, 생물학적 처리방안이 연구되고 있으나 이러한 방법들은 에너지 과소비, 2차 오염물질 발생에 따른 처리비용 증가 등의 단점을 가지고 있다. 따라서 본 연구에서는 기존의 연구 방법을 보안하고자 전기분해를 활용하여 슬러지 가용화를 시도함으로써 슬러지 발생을 저감시킬 수 있는 방법을 연구하였다. 본 실험에서는 전기분해를 위해 제작된 불용성 전극은 Titanium에 Iridium을 코팅하여 제작하였고, 최대 20V까지 전압을 고정시키고 시간에 따라 변화되는 전류와 전기전도도, pH 값을 관찰하였다. 실험에 사용된 활성슬러지는 3개월간 합성폐수로 순응화 시킨 후에 시료로 사용하였다. 전기분해에 의해 처리된 활성슬러지의 여액을 분석한 결과 SCOD, TN, TP 농도가 각각 510%, 9%, 106% 증가하였다. 이는 전기분해에 의해 미생물의 세포벽이 파괴되어 세포 내 물질들이 세포 외부로 용출되어 미생물들의 이용이 가능한 상태로 되었음을 알 수 있었다. 이는 국내 하 폐수의 낮은 C/N비 때문에 무산소조에 메탄올 같은 외부 탄소원을 공급하는 대신에 별도의 탄소원 공급 없이 가용화 된 슬러지를 반송시킴으로써 슬러지 저감에 따른 폐기 비용과 운전비용의 절감을 기대할 수 있어, 근본적인 슬러지 발생을 저감시킬 수 있는 해결책이라 할 수 있다.

  • PDF

Application of Cationic Cetyltrimethylammonium Chloride Surfactant to Collecting of Hanji Sludge (양이온 계면활성제 Cetyltrimethylammonium Chloride를 이용한 한지 슬러지의 제거)

  • Kim, Tae-Young;Choi, Hee-Seon
    • Analytical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.157-162
    • /
    • 2002
  • A technique which could collect the traditional and the industrial hanji fibrous sludge efficiently from wastewater using a cationic surfactant cetyltrimethylammonium chloride (CTAC) was developed. When the concentration of CTAC was $1{\mu}g/mL$ in wastewater that the amount of the traditional hanji fibrous sludge was about 0.08 g/L, the collecting yield was more than 95% and the collecting time was less than 30 sec. When only CTAC was used to collect the industrial hanji fibrous sludge, about 90% of collecting yield was obtained at more than $15{\mu}g/mL$ CTAC. But the sludge layer at the surface of solution was not stabilized and the flotation time was relatively longer. And, when $5{\mu}g/mL$ CTAC and various amount of PAMID$^{(R)}$ was added to the industrial hanji sludge, the collecting yield was increased and sludge layer also was more stabilized. But the collecting yield was higher in the traditional hanji sludge than in the industrial hanji sludge.

Estimation of Acidic Wastewater Toxicity on the Activated Sludge (활성슬러지에 미치는 산폐수의 독성도 예측)

  • Choi, Kwang-Soo;Ko, Joo-Hyung;Jang, Won-Ho;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2175-2185
    • /
    • 2000
  • Respiration rate should be a reasonable state variable for the activated sludge and could be used to simulate the performance of the activated sludge process. Toxic materials are classified into three groups, competitive, noncompetitive and uncompetitive. They increase/decrease the half saturation coefficient or specific growth rate. that means decreasing of the substrate removal capacity. In this research, a pilot-scale activated sludge process was operated under extended aeration method, and a representative noncompetitive inhibitor, acidic wastewater was applied to establish a respirometry-based toxicity model. Using this model. the correlation coefficient between measured and calculated respiration rate was 0.96 when acidic wastewater(pH 3.9~5.5) was introduced continuously to the aeration tank. Even though respiration rate was decreased by toxic effect of acidic wastewater, effluent substrate concentration represented to COD was deteriorated just a little bit. It might be caused by the low ratio of readily biodegradable substrate in the input substrate. Reduction of respiration rate by decreasing of input substrate concentration was much lower than that by acidic wastewater, and hence it was estimated that the possibility of false toxic alarm caused by decreasing of substrate concentration should be low.

  • PDF

Treatment of Corn Starch Wastewater Using an UASB Reactor (UASB 반응조를 이용한 옥수수 전분폐수의 처리)

  • Shin, Hang-Sik;Bae, Byung-Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.269-275
    • /
    • 1993
  • The performance of Upflow Anaerobic Sludge Blanket(UASB) reactor for treatment of corn starch wastewater was investigated using continuous and batch experiment. Results showed that the corn starch wastewater had different characteristics in terms of biodegradability and methane potential, depending on the manufacturing precess. COD removal efficiencies were maintained over 70% up to the loading rate of 3.2 kg $COD/m^3{\cdot}day$ and the maximum gas production rate was about 55 l/day, equivalent to 3.5 l/day per liter of reactor volume, at the loading rate of 8.4 kg $COD/m^3{\cdot}day$. In the anaerobic serum bottle test(SBT) carried out along with continuous operation, the sludge activity was found to increase from 0.03 to 0.53 g $COD-CH_4/g\;VSS{\cdot}day$ as granular sludges were developed in 130 days operation. SBT gave valuable informations on the characteristics of wastewaters to be treated as well as on the sludge activity. The overall morphological characteristics of granular sludges cultivated on corn starch wastewaters were similar to those cultivated on various organic industrial wastewaters such as distillery and sugar.

  • PDF

Anaerobic Treatment of Landfill Leachate Using a Upflow Anaerobic Sludge Blanket Reactor (UASB 반응조를 이용한 매립지 침출수의 혐기성 처리)

  • Lee, Chae-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.4
    • /
    • pp.151-160
    • /
    • 2006
  • Anaerobic treatment of landfill leachate was studied to investigate the behaviors of pollutant and the characteristics of microorganism for 10 months. The upflow anaerobic sludge blanket (UASB) reactor achieved about 90% chemical oxygen demand (COD) removal at organic loading rates(OLR) up to $20kgCOD/m^3.d$. At higher OLR ($8-20kgCOD/m^3.d$), the propionate concentration increased, indicating that converting propionate to acetate was the rate-limiting step. Nevertheless, increase in the precipitate inside and on the surface of granules as well as on the wall of the reactor resulted in operational problems. The main inorganic precipitate in the granule was calcium compound. Although specific methanogenic activity (SMA) was not affected seriously in this study, metals had to be removed prior to anaerobic treatment so as to be free from the excessive inorganic accumulation that resulted in operational problems.

  • PDF

Ultrasonic and Alkaline Pre-treatments of Waste Activated Sludge for Enhancing Anaerobic Digestion (혐기성 소화를 위한 폐활성슬러지의 초음파와 알칼리 전처리)

  • Park, In Geun;Son, Han Hyung;Lee, Chae Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.53-63
    • /
    • 2018
  • The hydrolysis of organic solid waste, such as sludge, is the rate-limiting step of the anaerobic digestion. The longer rate-limiting step lead to decrease of treatment efficiency and increase hydraulic retention time and anaerobic digester. Therefore, the pre-treatment has been applied for accelerating the hydrolysis step. This study was investigated the effects of pre-treatment of waste activated sludge using ultrasonic and alkaline integrated treatment simultaneously. The results showed the cumulative methane production and the methane production rate increased while the lag phase decreased. Therefore ultrasonic and alkaline integrated pre-treatment of waste activated sludge resulted in acceleration of hydrolysis step in anaerobic digestion.

Pilot-scale Study for Pulse Power Pretreatment of Waste Activated Sludge (Pulse Power를 이용한 폐활성슬러지 전처리의 파이럿 규모 연구)

  • Yoo, Hee Chan;Hong, Seung Mo;Choi, Han Na
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.3
    • /
    • pp.71-81
    • /
    • 2005
  • Anaerobic digestion is employed worldwide as the oldest and most important process for sludge stabilization. An additional advantage is the production of methane during anaerobic digestion. However, the waste activated sludge(WAS) has poor anaerobic degradability and less gas production due to the cell wall of bio-solid. In order to improve and enhance stabilization and dewatering of the WAS, a number of pretreatment processes have been developed and investigated. In this research, a pilot-scale study of pulse power pretreatment was performed to improve anaerobic degradability and dewaterability of the WAS. A pilot plant was designed and operated based on a previous laboratory study. Change of the sludge characteristics by pulse power pretreatment was estimated to assess the increasing soluble organics. The increased soluble organics could be used as a good substrate in the anaerobic digesion process. Gas production and methane potential of the anaerobic digestion were estimated as the parameters of anaerobic degradability. For evaluation of the dewaterability of pretreated WAS, capillary suction time(CST) and specific resistance were measured. The efficiency of energy recovery was also estimated by calculating energy balance.

  • PDF