• Title/Summary/Keyword: 슬러지건조연료

Search Result 21, Processing Time 0.034 seconds

A Study on the Evaluation of Fuel Characteristic and Economic Benefit for Co-combustion of Dried Sewage Sludge with Coal (건조 하수슬러지의 석탄 혼소를 위한 연료특성 및 경제성 평가에 관한 연구)

  • Kang, Jeong Hee;Kang, Jong Yun;Lee, See Hyung;Kim, Byung Tae;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • A study on combustion characteristic and evaluation of cost benefit were carried out using dried sewage sludge to evaluate co-combustion with coal in a coal-fired power plant. In the result of proximate analysis, sewage sludge has 78.09%, 79.65% of moisture content in A STP(Sewage Treatment Plant) and B STP, respectively. The dried sewage sludges show 0.12, 0.14 of fuel ratio value, respectively and over 30,000kcal/kg of combustible index. It means that the dried sewage sludges needs to reform from the results of fuel ratio and combustible index. As a results of the economical benefit evaluation of dried sewage sludge, about 73.4 million won through using the dried sewage sludges instead of coal and 56.4 million won through REC(Renewable Energy Certificate) cost were saved, respectively. On the other hand, it occurs 4.2 million won of additional cost related to ash disposal and 2.6 million won of investment/operation cost for co-combustion facility. In conclusion, co-combustion of dried sewage sludges with coal in a coal-fired power plant saves about 123 million won. However, it needs to consider for power supply to produce dried sewage sludges and opportunity cost for environmental pollution and so on to evaluate more reasonable benefit of co-combustion.

A study on the RDF(Refuse Derived Fuel) making process of Livestock manure sludge by oil-drying method (유중건조를 이용한 축산분뇨슬러지의 고형연료화 공정 연구)

  • Lee, Junho;Park, Soyeon;Lee, Kyeongho;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.294-301
    • /
    • 2017
  • In this study, we found the optimal manufacturing conditions of livestock manure sludge RDF with the oil-drying method. We performed oil evaporation, oil drying and pelletizing of the sludge to evaluate the value of the product (sludge RDF), and measured the performance of the product using calorimeter and PXRF equipment. Also, we conducted the calorie comparison test between sludge RDF manufactured in this study and wood RDF generally used in the field. Experimental results showed that 30g of the sludge treated by vegetable oil at $130^{\circ}C$ for 25 minutes were the optimal conditions to make the sludge RDF (considering the aspects of eco-friendly and mass production). The caloric value of the sludge RDF manufactured in this study was 5211kcal/kg which is higher than that of wood RDF used widely in the market. Finally, PXRF results showed sludge RDF contains no heavy metals with the exception of sulfur. Therefore, we recommend more study about the sulfur control process for future development of the industrial manufacturing process.

A Study on Drying and Carbonization of Organic Sludge from Sewage Plant and Petrochemical Industries for Energy and Resources Recovery (하수슬러지 및 석유화학산업단지 폐수슬러지의 에너지화와 재활용을 위한 건조 및 탄화에 관한 연구)

  • Jun, Kwan-Soo;Hwang, Eung-Ju;Kim, Hyung-Jin
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.154-164
    • /
    • 2009
  • In 2007, 94% of organic wastewater sludge from industries located in Ulsan was disposed of by ocean dump. The ocean dump of organic sludge would be totally prohibited by the year of 2012. However, there is no alternative but incinerating the sludge from the industries located in Ulsan. Securing the technology for sludge treatment and on-land disposal is very important issue among the industries in the Ulsan Petrochemical Industry Complex. In this study, the material aspects of dried and carbonized sludge as a fuel were evaluated for petrochemical and sewage sludge from Ulsan. The dried and carbonized sludges from the factories producing terephthalic acid, BTX, propylene, chemical textile, etc. of which the low heat value exceeded 3,000 kcal/kg had high potential as a fuel according to the results of thermal characteristic analysis. However, the dried sludges with heat values lower than 2,100 kcal/kg and carbonized sludges, lower than 1,100 kcal/kg containing more Inorganic material from the industries producing pulp, paper, methylamine, amide, etc. had a little potential to be used as a fuel. In most cases, drying the sludge showed better results than carbonization in the aspect of thermal characteristics of sludge.

Solid Fuel Carbonization Characteristics through Hydrothermal Carbonization of Sewage Sludge (하수슬러지의 수열탄화를 통한 고형연료 탄화 특성)

  • Seong Kuk Han;Moonil Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.53-61
    • /
    • 2023
  • Most of the sewage sludge is organic waste containing a large amount of organic substances decomposable by microorganisms by biological treatment. As for existing sewage sludge treatment methods, reduction and fuel conversion are being carried out using technologies such as drying, incineration, torrefaction, carbonization. However, the disadvantage of high energy consumption has been pointed out as latent heat of 539 kcal/kg is consumed based on drying. Therefore, in this study, we intend to produce solid fuel through hydrothermal carbonization(HTC), which is a thermochemical treatment. To evaluate the value of solid fuel, the characteristics of carbonization and fuel ratio were analyzed. As a result, as the hydrothermal carbonization reaction temperature increased, the lower heating value also increased by about 500 kcal/kg due to the increase in the degree of carbonization. H/C, O/C, ratio showed a decreasing trend from 1.78, 0.46 to 1.57, 0.32. When the ratio of ash to combustible content (fixed carbon + volatile) of dry sludge was 0.25 or more, it was derived that the degree of carbonization and calorific value did not increase even when hydrothermal carbonization was performed.

Emission Characteristics of Mercury and Heavy Metals from Coal and Waste Fuels (석탄과 폐기물 연료의 수은 및 중금속 배출 특성)

  • Ahmad, Tanveer;Park, Min;Keel, Sangin;Yun, Jinhan;Park, Jeong Min;Lee, Sang-Sup.
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.33-38
    • /
    • 2017
  • Waste can be utilized as secondary or alternative fuel. Solid recovered fuel (SRF) and dried sewage sludge were combusted to investigate heavy metal emissions from their combusiton in this study. Content of copper (Cu), chromium (Cr), cadmium (Cd), nickel (Ni), zinc (Zn), lead (Pb), arsenic (As) and mercury (Hg) of coal, SRF and dried sewage sludge were determined, respectively. Concentrations of these heavy metals in the combustion flue gas were also determined. As a result, emissions of gas-phase Cu, Cr, Cd, Ni, Zn, Pb and As compounds were found to be little. However, a significant amount of gas-phase Hg was emitted from combustion of coal, SRF and dried sewage sludge. While SRF showed a high mercury oxidation percentage in its combustion flue gas, dried sewage sludge showed a high level of gaseous mercury emission.

A Study on the Production of Landfill-Cover Material Using the Physical Characteristics of Sludge and the Reduction of Odor (슬러지의 물리적 특성을 이용한 매립복토재 생산과 악취저감에 대한 연구)

  • Park, Jung Hyun;Yeo, Woon Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.2
    • /
    • pp.15-29
    • /
    • 2020
  • The aims of this study is to improve physical properties of the sewage sludge and the process sludge generated in the leachate treatment by mixing the dry fuel, to develop the neutral solidifing agents that reduce oder, and to recycle the sewage and the process sludges as landfill cover materials. The mixing ratio (W/W) of sludges and dry fuel was appropriate at about 1:1, and the mixed materials were shown to be homogeneous at that ratio. We could know that when the sludges were mixed with dry fuel, moisture contents and viscosities are reduced, and air passages are formed between particles and particles. The various mixing tests and odor tests showed that the neutral solidifing agent was effective for the odor reduction. The main ingredient of the solidifing agent is the ash of sewage sludge, enabling it competitive in waste recycling and production costs. The landfill cover, using developed neutral solidification agent, improved physical properties to satisfy the quality standards and to increase the compressive strength. It also proved to reduce the value of complex oder and the usage of solidification agent to 1/3 (3,000 to 1,000) and to 1/8 (50% to 6%), respectively, from the comparative study with alkaline solidified landfill cover. Further research is under way to prove that this can be mixed with general soil to be used as a soil improvement agent for plant cultivation.

Co-firing Characteristics and Slagging Behavior of Sewage Sludge with Coal and Wood Pellet in a Bubbling Fluidized Bed (기포 유동층 반응기를 이용한 하수 슬러지와 석탄 및 우드 펠렛의 혼소 특성 및 슬래깅 성향 연구)

  • Ahn, Hyungjun;Kim, Donghee;Lee, Youngjae
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.323-331
    • /
    • 2018
  • The results of an experimental investigation on the co-firing characteristics and slagging behavior of dried and hydrothermal carbonization sewage sludge, sub-bituminous coal, and wood pellet in a fluidized bed were presented. Combustion tests were conducted in a lab-scale bubbling fluidized bed system at the uniform fuel-air equivalence ratio, air flow rate, and initial bed temperature to measure bed temperature distribution and combustion gas composition. 4 different fuel blending cases were prepared by mixing sewage sludge fuels with coal and wood pellet with the ratio of 50 : 50 by the heating value. $NO_x$ was mostly NO than $NO_2$ and measured in the range of 400 to 600 ppm in all cases. $SO_2$ was considered to be affected mostly by the sulfur content of the sewage sludge fuels. The cases of hydrothermal carbonization sewage sludge mixture showed slightly less $SO_2$ emission but higher fuel-N conversion than the dried sewage sludge mixing cases. The result of fly ash composition analysis implied that the sewage sludge fuels would increase the possibility of slagging/fouling considering the contents of alkali species, such as Na, K, P. Between the two different sewage sludge fuels, dried sewage sludge fuel was expected to have the more severe impact on slagging/fouling behavior than hydrothermal carbonization sewage sludge fuel.

A Study on the sludge drying using waste heat of cogeneration plant (열병합발전소 보일러 폐열을 이용한 슬러지 건조 연구)

  • Ryu, Seung-Han;Lee, Sang-Hun;Shin, Dong-Hoon;Park, Jun-Hyung;Jo, Suk-Jin;Kwak, Sung-Sik;Woo, Young-Hoon;Jeon, Jong-Seok
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.60-60
    • /
    • 2011
  • 염색폐수의 정화에는 필연적으로 다량의 슬러지 폐기물이 발생한다. 염색폐수 슬러지는 그간 인근 공해 해상에 투기하는 해양 배출로 저렴하게 처리하였으나, 해양오염을 우려하는 국제협약(1972년 런던협약, 1996년 교토의정서)에 의하여 2008년 8월부터 배출기준이 강화되고 2012년 2월부터는 해양배출이 금지 될 예정이다. 염색폐수 슬러지의 해양 배출이 금지되면 대체 처리방법으로는 지정매립장을 통한 매립처리 방법이나 고온 소각시설에서의 소각처리 방법이 거론되고 있다. 그러나 매립처리는 슬러지 내 함유 수분으로 인한 침출수의 문제와 더불어 장기간 안정적으로 저렴하게 사용할 수 있는 대규모 처분장을 확보하기 어려운 실정이며 소각처리는 슬러지의 높은 함수율로 인해 소각 시보조 연료의 투입이 필연적으로 최근 원유가 급등 등 에너지 비용이 지속적으로 상승함을 고려할 때 소각처리비용 또한 상당한 고가가 될 것으로 예측된다. 이와 같이 슬러지 해양배출이 금지되면 섬유 염색업체들은 많은 환경비용 부담을 안을 것이다. 본 연구에서는 대규모 염색산업단지 공동폐수처리장에서 발생하는 염색폐수 슬러지의 효율적인 건조를 위해 산업단지 내의 열병합발전소에서 발생하는 보일러 폐열을 이용하였으며, 조건 특성 및 효율을 파악하기 위해 보일러 폐열의 특성을 고려하여 슬러지 두께 및 체류시간 등 건조공정 운영조건에 따른 변수별 연구를 수행하였다. 열병합발전소 보일러에서 배출되는 폐열은 온도가 $150^{\circ}C$ 정도로 기존의 슬러지 건조에서는 사용되는 $700^{\circ}C$에 비해서는 매우 저온이다. 하지만 보일러 배가스의 경우, 온도에 비해 많은 풍량을 가지고 있으므로 열량으로 환산시 충분히 가치가 있는 것으로 조사되었다. 염색폐수 슬러지의 경우, 함수율 70% 이내의 탈수 Cake 형태이므로 두께가 두꺼울수록 건조효율이 감소하였으며, 체류시간이 길어질수록 건조효율은 증가하나 20mm 이상에서는 건조효율이 급격히감소하였다. 이를 바탕으로 5톤/일 규모 슬러지 건조 Pilot Plant를 제작하여 운영하였는데, 염색폐수슬러지의 투입공정에서 슬러지와 열풍의 접촉면적을 넓혀 건조효율을 높이기 위하여 슬러지를 압출노즐을 이용하여 슬라이스 칩 형태로 제조하여 건조공정에 투입하였으며, 건조실 내에서도 건조효율의 상승을 위하여 내부열풍순환팬을 설치하여 운영하였다. Pilot 운영결과, 체류시간 52분에서 슬러지의 함수율은 70%에서 10%이하로 감소하였다.

  • PDF

A Study on the Land Improvement Effect of Sewage Sludge and Sewage Sludge Dry Fuel Mixture (하수슬러지와 하수슬러지 건조연료 혼합물의 토지개량효과에 관한 연구)

  • Kwon, Gi Woon;Park, Hye Ok;Lee, Kyeong Ho;Kim, Moon Jeong;Lee, Woo Weon;Ryu, Don Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.3
    • /
    • pp.45-49
    • /
    • 2020
  • The aims of this study is to land improvement effect of sewage sludge dry fuel mixture. The mixing ratio of sewage sludge and dry fuel was mixed at a weight ratio of 1:1 to make a mixture, experimental designone was designed as one control (0 %) site and three test groups that each mixture of 10 %, 20 %, 30 % was added. Comparison of yield after cultivation of Kenaf 90days, in the 10 % test group the length of the stem increased by 73 % compared to control site and 20 % test group the leaf yield increased by 227 % compared to control site. It is judged that the growth rating the blooming of 30 % test group is faster than and the chlorophyll content is the highest(71.6SPAD) that of another control. In conclusion, the addition of dry fuel mixtures is effective in improving overall soil quality for plants to live.

Evaluation of Drying Performances by Hydrothermal Reaction of Sewage Sludge and Food wastes (하수슬러지 및 음식물류폐기물의 수열반응에 의한 건조 효율 평가)

  • Shin, Myung-Seop;Lee, Hyung-Don;Jeon, Yong-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.47-55
    • /
    • 2017
  • The technology for hydrothermal reaction of organic waste is one of the promising process to improve energy efficiency of biomass waste recycling system since moisture contents of treated biomass could be reduced at 40% or less than by dehydration processes. For these reasons, many parts of the world are interested in hydrothermal reaction of organic waste. In this paper, drying performances were evaluated with and without hydrothermal reaction of organic wastes which are sewage sludge and food wastes. For the hydrothermal reaction, organic wastes were treated at $200^{\circ}C$ for 1hr. Drying time of treated organic waste by hydrothermal reaction was reduced. In case of food waste drying at $100^{\circ}C$, drying time of treated wasted was reduced more 52.9% than non-treated. Hence, drying performances of sewage sludge and food wastes should be improved by hydrothermal reaction. Drying rates of treated wastes were considerably increased at preheat period of drying characteristic curve as followings; at $80^{\circ}C$ sludge as 148%, $100^{\circ}C$ sewage sludge as 151%, $80^{\circ}C$ food waste as 209%, $100^{\circ}C$ food waste as 366%. It means the surface area of treated wastes could be increased with destruction of cell membrane by hydrothermal reaction. However, the designer and operator of drying process should be careful, since enhanced drying rate cause the extension the decreasing drying period.