DOI QR코드

DOI QR Code

Solid Fuel Carbonization Characteristics through Hydrothermal Carbonization of Sewage Sludge

하수슬러지의 수열탄화를 통한 고형연료 탄화 특성

  • Seong Kuk Han (Bio-resource center, Institute for Advanced Engineering) ;
  • Moonil Kim (Dept. of Civil & Environmental System Engineering, Hanyang University)
  • 한성국 (고등기술연구원) ;
  • 김문일 (한양대학교 에리카캠퍼스 건설환경시스템공학과)
  • Received : 2023.06.05
  • Accepted : 2023.06.11
  • Published : 2023.06.30

Abstract

Most of the sewage sludge is organic waste containing a large amount of organic substances decomposable by microorganisms by biological treatment. As for existing sewage sludge treatment methods, reduction and fuel conversion are being carried out using technologies such as drying, incineration, torrefaction, carbonization. However, the disadvantage of high energy consumption has been pointed out as latent heat of 539 kcal/kg is consumed based on drying. Therefore, in this study, we intend to produce solid fuel through hydrothermal carbonization(HTC), which is a thermochemical treatment. To evaluate the value of solid fuel, the characteristics of carbonization and fuel ratio were analyzed. As a result, as the hydrothermal carbonization reaction temperature increased, the lower heating value also increased by about 500 kcal/kg due to the increase in the degree of carbonization. H/C, O/C, ratio showed a decreasing trend from 1.78, 0.46 to 1.57, 0.32. When the ratio of ash to combustible content (fixed carbon + volatile) of dry sludge was 0.25 or more, it was derived that the degree of carbonization and calorific value did not increase even when hydrothermal carbonization was performed.

하수슬러지의 대부분은 생물학적 처리에 의한 미생물에 의해 분해 가능한 유기물질을 다량 함유하고 있는 유기성 폐기물이다. 기존의 하수슬러지 처리방법으로는 건조, 소각, 반탄화 그리고 탄화 등의 기술을 이용하여 감량화 및 연료화를 진행하고 있다. 그러나, 건조를 기반으로 하여 539kcal/kg의 잠열이 소비됨으로 에너지 소비가 높은 단점이 지적되고 있다. 따라서 본 연구에서는 열화학적 처리인 수열탄화(HTC)를 통해 고형연료를 생산하고자 한다. 고형연료의 가치를 평가하기 위하여 탄화도 및 연료비의 특성을 분석하였다. 그 결과 수열탄화 반응온도가 증가할수록 탄화도의 상승으로 저위발열량도 약 500kcal/kg 상승하였다. H/C, O/C, Ratio는 1.78, 0.46에서 1.57, 0.32로 감소하는 경향을 보였다. 건조슬러지의 가연분(고정탄소+휘발분) 대비 회분(Ash)의 비율이 0.25 이상으로 나타날 경우는 수열탄화를 진행하여도 탄화도 및 발열량의 증가되지 않는다는 것을 도출하였다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 22UGCP-B157945-04).

References

  1. 2020 National waste generation and treatment status, Ministry of Environment&Korea Environment Corporation, (2021).
  2. Lee, Y. K. and Park, D. W., "A study on the fuel of sewage sludge by torrefaction process", Journal of Energy Engineering, 22, pp. 355~361. (2013). https://doi.org/10.5855/ENERGY.2013.22.4.355
  3. Bougrier, C., Delgenes, J. P. and Carrere, H., "Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion", Chem Eng J., 139(2), pp. 236~244. (2008). https://doi.org/10.1016/j.cej.2007.07.099
  4. Cho, J. B., Kim, W. G. and Jang, H., "A study on Quantitative Supply of Sewage Sludge for Co-incineration of Municipal Solid Waste and Sewage Sludge(II)-Based on Actual Incineration Plant", J. kor. Soc. Environ. Eng., 35(12), pp. 960~966. (2013). https://doi.org/10.4491/KSEE.2013.35.12.960
  5. Rulkens, W., "Sewage sludge as a biomass resource for the production of energy: overview and assessment of the various options", Energy & Fuels, 22(1), pp. 9~15. (2007). https://doi.org/10.1021/ef700267m
  6. Kim, D., Lee, K. and Park, K. Y., "Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery", Fuel, 130, pp. 120~125. (2014). https://doi.org/10.1016/j.fuel.2014.04.030
  7. Manara, P. and Zabaniotou, A., "Towards sewage sludge based biofuels via thermochemical conversion-a review", Renew. Sust. Energy Rev., 16(5), pp. 2566~2582. (2012). https://doi.org/10.1016/j.rser.2012.01.074
  8. Park, K. B., Hydrothermal treatments of low rank Caols for CWM applications, degree of Master, Korea Advanved Institute of Science and Technology, (1999).
  9. Funke, A. and Ziegler, F., "Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering", Biofuels, Bioprod., 4(2), pp. 160~177. (2010). https://doi.org/10.1002/bbb.198