• Title/Summary/Keyword: 슬러그

Search Result 38, Processing Time 0.026 seconds

Applicability of Pulse Tests to Estimate Transmissivity in Crystalline Rock (결정질 암반의 투수량계수 도출을 위한 펄스시험의 적용성 연구)

  • Park, Kyung-Woo;Park, Byeong-Hak;Ko, Nak-Youl;Ji, Sung-Hoon
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.223-235
    • /
    • 2020
  • In this study, pulse tests were undertaken at an underground research facility, as part of in-situ hydraulic tests, to derive the hydrogeological characteristics of crystalline rock. The applicability of pulse tests for estimating the transmissivity of a fractured rock mass was evaluated by comparing the results to those from a slug test. Results from the pulse and slug tests were very similar for the test section, with both tests indicating low transmissivity. A slight difference between the results of pulse and slug tests, however, was observed in the section with the transmissivity larger than 1 × 10-8 ㎡/s, which is likely due to the difference in the radii of influence of the tests. Furthermore, when the pulse test was conducted in permeable zones where transmissivity was larger than 1 × 10-7 ㎡/s, it was difficult to produce accurate results. This lack of accuracy was due to the rapid recovery of the hydraulic head in these permeable test zones. When performing pulse tests, it was important to accurately measure the pressure when valves were opened and closed in order to apply the head change in the test section. Although it is difficult to derive the hydrogeological characteristics from pulse tests in areas with high permeability, these tests can be used as an economical test method for identifying hydrogeological characteristics in a relatively short time, especially when deriving the transmissivity of rocks with low permeability.

증기폭발의 개관

  • 김병주
    • Journal of the KSME
    • /
    • v.28 no.3
    • /
    • pp.270-280
    • /
    • 1988
  • 증기폭발현상에 대한 기존의 연구내용들이 개괄적으로 소개되었다. 지난 30여년간 대규모 및 소규모 증기폭발에 대해 수많은 이론 및 실험적 연구가 진행되어 왔으나 아직 많은 과제들이 미해결의 상태로 남아 있다. 이들은 (1) 연료-냉각수 접촉양식의 영향 (2) 초기 혼합과정에 대한 에너지 전달 및 유동해석 (3) 연료파괴 과정에 대한 정량적 해석 (4) 폭발과정의 전파에 대한 제인자의 영향 (5) 팽창과정 중 슬러그(slug)의 영향 등이며 현상 자체의 난이성과 위 험성에 비추어 볼 때 해석에 많은 문제점을 안고 있다. 그러나 과학적인 호기심과 더불어 산 업재해 방지 및 현상의 생산적 이용이라는 최종목표에 도달하기 위해서는 체계적으로 집중적인 연구가 꾸준히 계속되어야 할 것이다.

  • PDF

Numerical Signal Prediction and Calibration Using the Theory of a Current-Type Electromagnetic Flowmeter for Two-Phase Slug Flow (슬러그 2상유동에서 전류형식 전자기유량계 수치적 신호예측 및 보정)

  • Ahn Yeh-Chan;Oh Byung Do;Kim Jong-Rok;Kim Moo Hwan;Kang Deok-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.671-686
    • /
    • 2005
  • The transient nature and complex geometries of two-phase gas-liquid flows cause fundamental difficulties when measuring flow velocity using an electromagnetic flowmeter. Recently, a current-sensing flowmeter was introduced to obtain measurements with high temporal resolution (Ahn et al.). In this study, current-sensing flowmeter theory was applied to measure the fast velocity transients in slug flows. The velocity fields of axisymmetric gas-liquid slug flow in a vertical pipe were obtained using Volume-of-Fluid (VOF) method, and the virtual potential distributions for the electrodes of finite size were also computed using the finite volume method for simulating slug flow. The output signal prediction for slug flow was carried out from the velocity and virtual potential (or weight function) fields. The flowmeter was numerically calibrated to obtain the cross-sectional liquid mean velocity at an electrode plane from the predicted output signal. Two calibration parameters are proposed for this procedure: a flow pattern coefficient and a localization parameter. The flow pattern coefficient was defined by the ratio of the liquid resistance between the electrodes for two-phase flow with respect to that for single-phase flow, and the localization parameter was introduced to avoid errors in the flowmeter readings caused by liquid acceleration or deceleration around the electrodes. These parameters were also calculated from the computed velocity and virtual potential fields. The results can be used to obtain the liquid mean velocity from the slug flow signal measured by a current-sensing flowmeter.

Development of a Current-Type Electromagnetic Flowmeter to Obtain the Liquid Mean Velocity in Two-Phase Slug Flow (슬러그류 액상속도 측정용 전류형식 전자기유량계 개발)

  • Kang, Deok-Hong;Ahn, Yeh-Chan;Kim, Jong-Rok;Oh, Byung-Do;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1951-1956
    • /
    • 2004
  • The transient nature and complex flow geometries of two-phase gas-liquid flows cause fundamental difficulties when measuring flow velocity using an electromagnetic flowmeter. Recently, a current-sensing flowmeter was introduced to obtain measurements with high temporal resolution (Ahn et $al.^{(1)}$). In this study, current-sensing flowmeter theory was applied to measure the fast velocity transients in slug flows. To do this, the velocity fields of axisymmetric gas-liquid slug flow in a vertical pipe were obtained using Volume-of-Fluid (VOF) method and the virtual potential distributions for the electrodes of finite size were also computed using the finite volume method for the simulated slug flow. The output signal prediction for slug flow was carried out from the velocity and virtual potential (or weight function) fields. The flowmeter was numerically calibrated to obtain the cross-sectional liquid mean velocity at an electrode plane from the predicted output signal. Two calibration parameters are required for this procedure: a flow pattern coefficient and a localization parameter. The flow pattern coefficient was defined by the ratio of the liquid resistance between the electrodes for two-phase flow with respect to that for single-phase flow, and the localization parameter was introduced to avoid errors in the flowmeter readings caused by liquid acceleration or deceleration around the electrodes. These parameters were also calculated from the computed velocity and virtual potential fields. The results can be used to obtain the liquid mean velocity from the slug flow signal measured by a current-sensing flowmeter.

  • PDF

Verification of the Experimental Correlation for Dynamic Contact Angle by Visualizing Interfaces of Water-Glycerol Mixture Slug in a Hydrophobic Microtube via Synchrotron X-ray Imaging (방사광 X-선 영상법을 이용한 소수성 마이크로 관 내 물-글리세롤 혼합물 슬러그 계면 가시화를 통한 동적접촉각 상관식 검증)

  • Jang, Jin Gyu;Kim, Young Hyun;Kim, Kyoung Joon;Lee, Junghoon;Lee, Yeon Won;Yu, Dong In
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.145-150
    • /
    • 2022
  • Dynamic contact angles have investigated by numerous researchers for understanding interfacial behavior at moving contact lines However, due to limitation of visualization techniques, previous experiments for dynamic contact angles have conducted limitedly in hydrophilic capillary tubes based on visible ray. Recently, there is continuous need for research on dynamic contact angles in hydrophobic capillary tubes on various research and industrial fields. Therefore, in this study, we measure the dynamic contact angles of water-glycerol mixture slug in hydrophobic microtubes using synchrotron X-ray imaging. Based on the visualized data, we verified the previous experimental correlations for dynamic contact angles.

Numerical Simulation of a Taylor Bubble Rising in a Vertical Tube (수직관에서 상승하는 Taylor 기포의 수치해석)

  • Son, Gi-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.373-380
    • /
    • 2001
  • In this study, a single Taylor bubble and a train of Taylor bubbles rising in a vertical tube were simulated numerically. A finite difference method was used to solve the mass and momentum equations for the liquid-gas region. The liquid-gas interface was captured by a level set function which is defined a signed distance from the interface. For a train of Taylor bubbles repeated periodically in space, the periodic conditions were imposed at the boundaries normal to the gravitational direction and the pressure boundary conditions were iteratively determined so that the computed flow rate should be equal to a given flow rate. Based on the numerical simulation, the calculated shape and rise velocity of a Taylor bubble were found to be in good agreement with the experimental data reported in the literature.

Hydraulic Parameter Estimation of a Granite Area Using Slug Tests (순간충격시험에 의한 화강암지역의 수리적 매개변수 산출)

  • 함세영;김문수;성익환;이병대;김광성
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.63-79
    • /
    • 2001
  • This study is aimed for estimating hydraulic parameters using the Cooper-Bredehoeft-Papadopulos, the Hvorslev, and the Bouwer & Rice methods at nineteen test holes in Me. Geumjeong area composed of Bulguksa granites, and for characterizing hydraulic properties at the test holes with relatioll to drill core data. The relation among hydraulic Dammeters obtained by the three methods is also considered. The study area is divided into four sub-areas to consider the hydraulic characteristics. The difference of hydraulic conductivity estimates between the injection and the withdrawal slug test may be due to penncable fracture distlibutions around the test hole and/or the disturbance of fine mateIials in the fractures induced by the pressure variation due to different mechanisms of test initiation. The hydraulic conductivity estimates detennined by the Cooper-Bredehoeft-Papadopulos, the Hvorslev and the Bouwer & Rice methods ranges from 10$^{-8}$ to lO$^{-5}$m/sec, and the ranges of average values are from 10$^{-7}$ to 10$^{-6}$m/sec. Also, the transmissivity ranges from 10$^{-7}$ to 10$^{-5}$$m^2$/sec. Comparing average hydraulic conductivity by the Cooper-Bredehoeft-Papadopulos, the Hvorslev and the Bouwer & Rice methods, by the Hvorslev method has the highest values, then the Bouwer & Rice method, and the Cooper-Bredehoeft-Papadopulos method has the lowest.

  • PDF

Numerical Study on Operating Factors Affecting Performance of Surfactant-Enhanced Aquifer Remediation Process (계면활성제 증진 대수층 복원 프로세스에 영향을 미치는 운영 인자들에 대한 수치 연구)

  • Lee, Kun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.690-698
    • /
    • 2010
  • Contamination of groundwater resources by organic chemicals has become an issue of increasing environmental concern. Surfactant-enhanced aquifer remediation (SEAR) is widely recognized as one of the most promising techniques to remediate organic contaminations in-situ. Solutions of surfactant or surfactant with polymer are used to dramatically expedite the process, which in turn, may reduce the treatment time of a site compared to use of water alone. In the design of surfactant-based technologies for remediation of organic contaminated aquifers, it is very important to have a considerable analysis using extensive numerical simulations prior to full-scale implementation. This study investigated the formation and flow of microemulsions during SEAR of organic-contaminated aquifer using the finite difference model UTCHEM, a three-dimensional, multicomponent, multiphase, compositional model. The remediation process variables considered in this study were the sequence of injection fluids, the injection and extraction rate, the concentrations of polymer in surfactant slug and chase water, and the duration of surfactant injection. For each variable, temporal changes in injection and production wells and spatial distributions of relative saturations in the organic phase were compared. Cleanup time and cumulative organic recovery were also quantified. The study would provide useful information to design strategies for the remediation of nonaqueous phase liquid-contaminated aquifers.

First Sexual Maturity, Spawning Frequency and Deposition of the Egg Capsules of the Female Purple Shell Rapana venosa in the Slag Deposit Area, Gwangyang Bay, Korea (한국 광양만, 슬러그 적재장내에 서식하는 암컷 피뿔고둥 Rapana venosa의 군성숙도, 산란빈도 및 난낭 산출)

  • Chung, Ee-Yung;Kim, Si-Hwan;Seong, Chi-Nam
    • Development and Reproduction
    • /
    • v.6 no.1
    • /
    • pp.37-44
    • /
    • 2002
  • First sexual maturity, sex ratio, spawning frequency, deposition of the egg capsules and fecundity of the female Rapana venosa(Valenciennes) inhabited in the artificially closed slag deposit area, Gwangyang Bay were investigated by histologicai and visual observations for natural living resource management. The rate of individuals reaching the first sexual maturity was 51.6% in females measuring 7.1~8.0 cm in shell height, and 100% in those > 10.1 cm. The total number of egg capsules per individual and the mean number of eggs in an egg capsule were 192~382 and 500, respectively. However, the number of eggs per individual and sizes of egg capsules under lower salinity and deficient food conditions in the closed slag deposit area were smaller than those under the optimum salinity and sufficient food conditions in the open regions. Fecundities of the species were approximately from 96,000 to 191,000 eggs/individual with two to low broods(spawning frequencies) during the spawning season. The duration of development in egg capsules was 18~19 days at about 18~2$0^{\circ}C$. R. venosa is a species whose embryos hatch as veliger larvae, not juvenile snail. The sex ratio of female : male was not significantly different from 1 : 1($\chi$$^2$= 0.23, p>0.05).

  • PDF

Determination of Enthalpy in the High Temperature Test Facility (고온 시험장치에서의 엔탈피 결정)

  • Na, Jae-Jeong;Lee, Jung-Min;Kang, Kyung-Taik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.224-227
    • /
    • 2011
  • In order to determine the enthalpy profile in the high temperature transpiration cooling test facility for the air-breating engine compartments, theoretical calculation and measurement for the flow of the test section are performed. The mass averaged enthalpy value determined by the heat balance and sonic throat methods is 10 MJ/kg. The centerline enthalpy value measured using the slug type copper calorimeter is 15 MJ/kg. Typically, the ratio of centerline and mass averaged enthalpy should be varies from 1.4 to 4. This facility has lower bound of enthalpy profile. It will be effective in testing of high temperature transpiration cooling.

  • PDF