• Title/Summary/Keyword: 슬래그시멘트

Search Result 635, Processing Time 0.023 seconds

Mechanical and Electrical Properties of Low-Cement Mortar Using a Large Amount of Industrial By-Products (산업부산물을 다량활용한 저시멘트 모르타르의 역학적·전기적 특성)

  • Kim, Young-Min;Im, Geon-Woo;Lim, Chang-Min;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.43-44
    • /
    • 2023
  • This study evaluated the mechanical and electrical properties of low-cement mortar using a large amount of industrial by-products to reduce carbon emissions from the cement industry. As types of industrial by-products, blast furnace slag and fly ash, which are representative materials, were used, and ultra-high fly ash was mixed and evaluated to solve the problem of initial strength loss. In addition, in order to evaluate the electrical properties, 1% of MWCNT was incorporated relative to the powder mass. As experimental items, the compressive strength was measured on the 1st, 3rd, 7th and 28th days of age, and the rate of change in electrical resistance was measured on the 28th day of age. As a result of the experiment, the initial strength of the test specimen mixed with blast furnace slag and fly ash was significantly lower than that of 100% cement, and the specimen mixed with blast furnace slag showed strength equal to that of cement at 28 days of age. As an electrical characteristic, the electrical resistance was reduced when the load was loaded, and this reason is judged to be the effect of improving the conductivity as the connection between CNTs is narrowed by the compressive load.

  • PDF

Investigation of Electrical Resistance Properties in Surface-Coated Lightweight Aggregate (표면코팅 경량골재의 전기저항 특성)

  • Kim, Ho-Jin;Kim, Chang-Hyun;Choi, Jung-Wook;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.727-738
    • /
    • 2023
  • In concrete, the interface between the aggregate and cement paste is often the most critical factor in determining strength, representing the weakest zone. Lightweight aggregate, produced through expansion and firing of raw materials, features numerous surface pores and benefits from low density; however, its overall aggregate strength is compromised. Within concrete, diminished aggregate strength can lead to aggregate fracture. When applying lightweight aggregate to concrete, the interface strength becomes critical due to the potential for aggregate fracture. This study involved coating the surface of the aggregate with blast furnace slag fine powder to enhance the interfacial strength of lightweight aggregate. The impedance of test specimens was measured to analyze interface changes resulting from this surface modification. Experimental results revealed a 4% increase in compressive strength following the coating of the lightweight aggregate surface, accompanied by an increase in resistance values within the impedance measurements corresponding with strength enhancement.

An Experimental Study on the Properties of Admixtures for Concrete (콘크리트용 혼화재의 특성에 관한 실험적 연구)

  • Bae, Su-Ho;Chung, Young-Soo;Park, Kwang-Su;Lee, Joon-Gu
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.115-125
    • /
    • 1999
  • The purpose of this experimental research is to investigate the properties of workability and strength of the concrete containing admixtures such as silica fume, fly ash, ground granulated blast-furnace slag, and rice husk ash. For this purpose, the workability and the strength of the concrete containing each admixture were tested and analyzed according to the unit weight of binder and the replacement ratio of each admixture. As a result, considering their workability and strength, the existence of minimum binder weight and optimum replacement ratio of concrete containing admixture to plain concrete were obtained for each admixture.

Rheological Properties of Cement Paste Containing Ultrafine Blastfurnace Slag (초미분말 고로슬래그를 혼합한 시멘트 페이스트의 유동특성)

  • You, Chang-Dal;Byun, Seung-Ho;Song, Jong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.430-436
    • /
    • 2007
  • Rheological properties of cement paste containing ultrafine blastfurnace slag (UBS, $9600cm^2/g$) were investigated by mini-slump test, pH meter, conduction calorimeter and coaxial cylinder viscometer. In order to improve rheological properties of the cement paste, granulated blastfurnace slag (GBS, $3500cm^2/g$) and polycarboxylate type superplasticizer (PC) were also used in this experiment. The fluidity of cement paste containing UBS was decreased. The yield stress and plastic viscosity of cement paste was increased with increasing UBS. But the rheological properties were improved when GBS and PC were added to UBS blended cement paste. In the relationship between the yield stress and the plastic viscosity or the mini-slump value, the yield stress of the cement paste was proportional to the plastic viscosity of it. However the cement paste mini-slump value was in inverse proportional to the yield stress.

Proposition of the Removal Time of From Based on the Analysis of Strength Development of Concrete Using Blast-furnace Slag Cement (고로슬래그 시멘트를 사용한 콘크리트의 강도 증진 해석에 의한 거푸집 존치기간의 제안)

  • 표대수;유호범;한민철;윤기원;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.163-168
    • /
    • 2000
  • In this paper, removal times of from from concrete using OPC( Ordinary Portland Cement) and BSC(Blast-furnace Slag cement) are suggested by appling logistic curve, which evaluates the strength development of concrete with maturity. W/B, kinds of cement and curing temperatures are selected as test parameters. According to the results, the estimation of strength development by logistic curve has a good agreement between calculated values. As for the removal time of from suggested in this paper, as W/B increase, curing temperature decrease and BSC in used, removal they times of from are shown to be kept longer. Removal times of from from concrete using OPC suggested in this paper are shorter by about 2~3day than those of standard specifications provided in KCI in the rang of over $20^{\circ}C$, while they takes 4~5 day shorter compared with those of standard specifications Provided in KCI in the range of 10~$20^{\circ}C$. Removal times of from for concrete using OPC are longer than those using BSC by about 1 day.

  • PDF

Hardening Characteristics and Microstructure Analysis of Blast Furnace Slag-Cement Mortar Replaced Alpha-calcium Sulfate Hemihydrate (알파반수석고 치환 고로슬래그 시멘트 모르타르의 경화특성 및 미세구조 분석)

  • Kim, Gyeong-Tae;Kim, Gyu-Yong;Lee, Bo-Kyeong;Yoon, Min-Ho;Lee, Sang-Kyu;Seo, Won-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.18-19
    • /
    • 2017
  • In this study, hardening characteristics and microstructure of blast furnace slag-cement mortar replaced alpha-calcium sulfate hemihydrate were analyzed. As a result of replacing alpha-calcium sulfate hemihydrate with 0, 10, 20, 30%, it was confirmed that the initial and final setting times are faster than that of blast furnace slag-cement mortar. The compressive strength of the specimens containing alpha-calcium sulfate hemihydrate decreased in the range of 42 ~ 76% at age 28 days compared with blast furnace slag-cement mortar. In the case of replacing the alpha-calcium sulfate hemihydrate, the shrinkage did not occur more rapidly than the cement mortar, but the slope of the strain curve showed a linear behavior. The results of scanning electron microscopy images analysis showed that the formation of ettringite was increased at alpha-calcium sulfate hemihydrate replaced mortar.

  • PDF

Fundamental Characteristics of High Strength SCMs Concrete According to Mixing Ratio of FA and BS (FA 및 BS의 혼합비율 변화에 따른 3성분계 고강도 콘크리트의 기초적 특성)

  • Kim, Min-Sang;Moon, Byeong-Yong;Lee, Jae-Jin;Park, Sung-Bae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.154-155
    • /
    • 2017
  • With the recent development in construction industry, industrial by-products fly ash(FA) and blast furnace slag(BS) have been used in large quantities as an alternative to cement, as a solution for environmental problems and resource exhaustion. This study analyzed the basic characteristics according to the changes in replacement ratio and mixing ratio of FA and BS in high strength SCMs concrete, from which in turn it sought to find the optimal mixing ratio for high strength concrete The results showed that in unhardened concrete the more the replacement ratio and FA mixing ratio increases the slump flow will increase while amount of air decreases, and setting time is delayed. In hardened concrete the more the replacement ratio and FA mixing ratio increases the more the overall compression strength decreases, but until 28 days of material age the larger of the BS ratio displayed the best compression strength.

  • PDF

The Comparative Experimental Study of short and long-term Behavior of the Blended High-Fluidity Cement Concrete and Existing Nuclear Power Plant Structural Concrete (기존 원전용 콘크리트와 다성분계 고유동 콘크리트의 장·단기거동 비교 실험 연구)

  • Lee, Pyung-Suk;Kwon, Ki-Joo;Kim, Su-Man
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.195-202
    • /
    • 2004
  • In this study, it was founded to make the optimal mixture for producing concrete which is self-compacting, yet, and generates low heat of hydration by using flyash, blast furnace slags and limestone powders as binders in addition to cement while using super-plasticizers and viscosity agents as admixture agents. The structural behaviors of the concrete produced with the selected mixture were compared with those of the concrete currently using for construction of nuclear power plants. The study shows that the blended high fluidity concrete including limestone is better in workability and durability than the concrete currently in use for nuclear power plants.

Performance Evaluation of Porous Hwang-toh Concrete Using Blast Furnace Slag Cement (고로슬래그시멘트를 사용한 다공성 황토콘크리트의 성능 평가)

  • Kim, Hwang-Hee;Kang, Su-Man;Park, Jong-Sik;Park, Sang-Woo;Jeon, Ji-Hong;Lee, Jin-Hyung;Cha, Sang-Sun;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.9-17
    • /
    • 2010
  • This study aims to evaluate a porous concrete using hwang-toh, blast furnace slag and blast furnace slag (BFS) cement instead of type I cement. The tests that were carried out to analysis the properties of porous hwang-toh BFS cement concrete included compressive strength, continuous void ratio, absorption rate, and pH value, repeated freezing and thawing test were conducted. Test results indicated that the performance in porous hwang-toh concrete are effective on the kaoline based binder materials. The pH value were shown in about 9.5 ~ 8.5. The compressive strength was increased and void ratio was decreased with increasing the kaoline based binder materials, respectively. The void ratio and compressive strength were in the range of about 21 ~ 30 %, 8 ~ 13 MPa, respectively. The increased in void ratio of more than 25 % is showed to reduce the resistance of repeated freezing and thawing. Also, the resistance of repeated freezing of thawing and the compressive strength of porous hwang-toh BFS cement concrete are independent with hwang-toh content and BFS cement amount. But, the void ratio was decreased with increasing the high volume hwang-toh contents (more than 15 %).

Rheological Properties of Cement Paste Blended Blast Furnace Slag or Fly Ash Powder (고로슬래그 및 플라이 애시 분말을 혼합한 시멘트 페이스트의 유동특성)

  • Song, Jong-Taek;Park, Hyo-Sang;Byun, Seung-Ho;Yoo, Dong-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.6
    • /
    • pp.336-344
    • /
    • 2008
  • Rheological properties of cement pastes containing blast furnace slag (BFS: 3,900, $7,910\;cm^2/g$) or fly ash powder (FA: 4,120, $8,100\;cm^2/g$) according to the ratio of water/binder (W/B) and the dosage of polycarboxylate type superplasticizer (PC) were investigated by a mini slump and a coaxial cylinder viscometer. In this experiment, the ratio of replacing OPC with BFS or FA was 30 wt%, the W/B was from 30 to 70 wt%. As a result, the fluidity of cement paste containing BFS or FA was improved with increasing W/B and the dosage of PC. BFS or FA replaced cement paste with W/B 70% and PC 0.3% showed the highest fluidity. The segregation range of cement paste was occurred below $10\;d/cm^2$ of the yield stress and below 50 cPs of the plastic viscosity by the coaxial cylinder viscometer. And also it was formed that the plastic viscosity and the yield stress of FA replaced cement paste were higher than them of BFS replaced cement paste.