• Title/Summary/Keyword: 슬라이더

Search Result 115, Processing Time 0.025 seconds

Phantom of the AAPM CT imaging evaluation Studies on the quantitative analysis method (CT 정도관리 영상의 정량적 분석방법에 관한 연구)

  • Kim, Young-su;Ko, Seong-Jin;Kang, Se-Sik;Ye, Soo-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.271-274
    • /
    • 2016
  • CT quality assurance imaging evaluation and enforcement as quantitative assessment by phantom image evaluation, assessment items include There are also contrasting the water attenuation coefficient, uniformity, noise, resolution, spatial resolution, 10mm slice thickness evaluation, contrast resolution, space for the resolution, the slice thickness evaluation, it is possible to estimate the error due to the evaluation by the subjective judgment of the tester, using a subjective error image processing program to be computed to minimize the objective evaluation. Basic recording conditions of the CT image quality control assessment is the same as special medical equipment quality control checks, the images were evaluated quantitatively using IMAGE J. For a CT attenuation coefficient, the uniformity, noise evaluation, were evaluated as CT quality control image the standard deviation of the measured value of the digital processing of image smaller and less noise uniform images than the, contrast and resolution assessment is the size of the diameter of a circle having a large the 1 inch, 0.75 inch, 0.5 inch quality if the diameter of the circle, was evaluated in the small circle in the near circle ellipse. Spatial resolution is evaluated by using a self-extracting features of an image processing program, all of the groups of members comprising the acceptance criteria to automatically extract, was evaluated to be very useful for the quantitative assessment. When CT image quality control assessment on the basis of the results such as the above, if using an image processing program to minimize the subjective judgment of the error evaluator and is determined more efficient than would be made quantitative evaluation.

  • PDF

Effect of Disk Rotational Speed on Contamination Nano Particles Generated in a Hard Disk Drive (하드 디스크 드라이브 회전수 변화가 드라이브 내 나노 오염 입자 발생에 미치는 영향)

  • Lee, Dae-Young;Hwang, Jung-Ho;Bae, Gwi-Nam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.976-983
    • /
    • 2004
  • In high-density hard disk drives, the slider should be made to fly close to the magnetic recording disk to generate better signal resolution and at an increasingly high velocity to achieve better data rate. The slider disk interaction in CSS (contact-start-stop) mode is an important source of particle generation. Contamination particles in the hard disk drive can cause serious problems including slider crash and thermal asperities. We investigated the number and the sizes of particles generated in the hard disk drive, operating at increasing disk rotational speeds, in the CSS mode. CNC (condensation nucleus counter) and PSS (particle size selector) were used for this investigation. In addition, we examined the particle components by using SEM (scanning electron microscopes), AES (auger electron spectroscopy), and TOF-SIMS (time of flight-secondary ions mass spectrometry). The increasing disk rotational speed directly affected the particle generation by slider disk interaction. The number of particles that were generated increased with the disk rotational speed. The particle generation rate increased rapidly at motor speeds above 8000 rpm. This increase may be due to the increased slider disk interaction. Particle sizes ranged from 14 to 200 nm. The particles generated by slider disk interaction came from the lubricant on the disk, coating layer of the disk, and also slider surface.

Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 3 - Effect of Groove Shape (미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제3보 - 그루브 형상의 영향)

  • Park, TaeJo;Jang, InGyu
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.193-198
    • /
    • 2020
  • Fluid film bearings are among the best devices used for overcoming friction and reducing wear. Surface texturing is a new surface treatment technique used for processing grooves and dimples on the lubricated surface, and it helps to minimize friction further and improve the wear resistance. In several studies, parallel surfaces, such as thrust bearings and mechanical face seals, have been investigated, but most sliding bearings have a convergent film shape. This paper presents the third part of a recent study and focuses on the effect of the groove shape on the lubrication performance of inclined slider bearings, following the two previous papers on the effects of the groove position and depth. We adopted the continuity and Navier - Stokes equations to conduct numerical analyses using FLUENT, which is a commercial computational fluid dynamics code. The groove shape adopted in the numerical analysis is rectangular and triangular, and its depth is varied. The results show that the streamlines, pressure distributions, and groove shape significantly influence the lubrication performance of the inclined slider bearing. For both shapes, the load-carrying capacity (LCC) is maximum near the groove depth, where vortices occur. In the shallow grooves, the LCC of the rectangular shape is higher, but in deeper grooves, that of the triangular shape is higher. The deeper the rectangular groove, the higher the decrease in the frictional force. The results of this study can be used as design data for various sliding bearings.

Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 1 - Effect of Groove Position (미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제1보 - 그루브 위치의 영향)

  • Park, TaeJo;Jang, InGyu
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.376-381
    • /
    • 2019
  • Surface texturing is widely applied to reduce friction and improve the reliability of machine elements. Despite extensive theoretical studies to date, most research has been limited to parallel thrust bearings, mechanical face seals, piston rings, etc. However, most sliding bearings have a convergent film shape in the sliding direction and the hydrodynamic pressure is mainly generated by the wedge action. The results of surface texturing on inclined slider bearings are largely insufficient. This paper is the first part of a recent study focusing on the effect of the groove position on the lubrication performances of inclined slider bearings. We model a slider bearing with one rectangular groove on a fixed pad and analyze the continuity and Navier-Stokes equations using a commercial computational fluid dynamics (CFD) code, FLUENT. The results show that the film convergence ratio and the groove position have a significant influence on the pressure and velocity distributions. There are groove positions to maximize the supporting load with the film convergence ratio and the groove reduces the frictional force acting on the slider. Therefore, the proper groove position not only improves the load-carrying capacity of the slider bearings but also reduces its frictional loss. The present results apply to various surface-textured sliding bearings and can lead to further studies.

Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 2 - Effect of Groove Depth (미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제2보 - 그루브 깊이의 영향)

  • Park, TaeJo;Jang, InGyu
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.382-388
    • /
    • 2019
  • It is currently well known that surface textures act as lubricant reservoirs, entrap wear debris, and hydrodynamic bearings, which can lead to certain increases in load-carrying capacities. Until recently, the vast majority of research has focused on parallel sliding machine components such as thrust bearings, mechanical face seals, piston rings, etc. However, most sliding bearings have a convergent film shape in the sliding direction and their hydrodynamic pressure is mainly generated by the wedge action. Following the first part of the present study that investigates the effect of groove position on the lubrication performances of inclined slider bearings, this paper focuses on the effects of groove depths and film thicknesses. Using a commercial computational fluid dynamics (CFD) code, FLUENT, the continuity and Navier-Stokes equations are numerically analyzed. The results show that the film thickness and groove depth have a significant influence on the pressure distribution. The maximum pressure occurs at the groove depth where the vortex is found and, as the depth increases, the pressure decreases. There is also a groove depth to maximize the supporting load with the film thickness. The friction force acting on the slider decreases with deeper grooves. Therefore, properly designed groove depths, depending on the operating conditions, can improve the load-carrying capacity of inclined slider bearings as compared to the bearings without a groove.

Design of a Transformable Spherical Robot Based on Multi-Linkage Structure (복합 링크 구조 기반의 가변형 구형로봇 설계)

  • Kang, Hyeongseok;Joe, Seonggun;Lee, Dongkyu;Kim, Byungkyu
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.26-33
    • /
    • 2017
  • We propose a variable frame structure connected with telescopic mast-shaped shaft for a robot displaying outstanding ability to cross obstacles, and for effective traction control. The wireless control system was built to extend and contract a deployable mechanism, which is shaped into a hoberman sphere assembled with frame structures. In order to develop important parameters for efficient locomotion, we derived an Euler-Lagrange equation for the spherical robot. According to the equation, the DC motor was selected. A prototype mechanism was tested and a Finite-Element Analysis (FEA) was conducted in parallel. Using these data, we constructed a deployable spherical robot with structural stability. The deployable robot moved at a speed of 0.85 m/s from 520 mm to 650 mm.

Haptic Media Broadcasting (촉각방송)

  • Cha, Jong-Eun;Kim, Yeong-Mi;Seo, Yong-Won;Ryu, Je-Ha
    • Broadcasting and Media Magazine
    • /
    • v.11 no.4
    • /
    • pp.118-131
    • /
    • 2006
  • With rapid development in ultra fast communication and digital multimedia, the realistic broadcasting technology, that can stimulate five human senses beyond the conventional audio-visual service is emerging as a new generation broadcasting technology. In this paper, we introduce a haptic broadcasting system and related core system and component techniques by which we can 'touch and feel' objects in an audio-visual scene. The system is composed of haptic media acquisition and creation, contents authoring, in the haptic broadcasting, the haptic media can be 3-D geometry, dynamic properties, haptic surface properties, movement, tactile information to enable active touch and manipulation and passive movement following and tactile effects. In the proposed system, active haptic exploration and manipulation of a 3-D mesh, active haptic exploration of depth video, passive kinesthetic interaction, and passive tactile interaction can be provided as potential haptic interaction scenarios and a home shopping, a movie with tactile effects, and conducting education scenarios are produced to show the feasibility of the proposed system.

Effect of Relative Humidity, Disk Acceleration, and Rest Time on Tribocharge Build-up at a Slider-Disk Interface of HDD (HDD에서 상대습도, 디스크 가속도, 정지시간이 슬라이더-디스크 인터페이스의 마찰대전 발생에 미치는 영향)

  • Hwang J.;Lee D.Y.;Lee J.;Choa S.H.
    • Tribology and Lubricants
    • /
    • v.22 no.2
    • /
    • pp.59-65
    • /
    • 2006
  • In hard disk drives as the head to disk spacing continues to decrease to facilitate recording densities, slider disk interactions have become much more severe due to direct contact of head and disk surfaces in both start/stop and flying cases. The slider disk interaction in CSS (contact-start-stop) mode is an important source of particle generation and tribocharge build-up. The tribocharge build-up in the slider disk interface can cause ESD (electrostatic discharge) damage. In turn, ESD can cause severe melting damage to MR or GMR heads. The spindle speed of typical hard disk drives has increased in recent years from 5400 rpm to 15000 rpm and even higher speeds are anticipated in the near future. And the increasing disk velocity leads to increasing disk acceleration and this might affect the tribocharging phenomena of the slider/disk interface. We investigated the tribocurrent/voltage build-up generated in HDD, operating at increasing disk accelerations. In addition, we examined the effects with relative humidity conditions and rest time. We found that the tribocurrent/voltage was generated during pico-slider/disk interaction and its level was about $3\sim16pA$ and $0.1\sim0.3V$, respectively. Tribocurrent/voltage build-up was reduced with increasing disk acceleration. Higher humidity conditions $(75\sim80%)$ produced lower levels tribovoltage/current. Therefore, a higher tribocharge is expected at a lower disk acceleration and lower relative humidity condition. Rest time affected the charge build-up at the slider-disk interface. The degree of tribocharge build-up increased with increasing rest time.

A Study on the Flying Stability of Optical Flying Head on the Plastic Disks (플라스틱 디스크상의 부상형 광헤드의 부상안정성에 관한 연구)

  • Kim, Soo-Kyung;Yoon, Sang-Joon;Choi, Dong-Hoon;Lee, Seung-Yop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.399-402
    • /
    • 2004
  • In the optical drive system, adopting the optical flying-type head (OFH) flying on a removable plastic disk, the flying stability of the small OFH should be carefully considered to ensure the reliability for first surface recording. Additional micro actuators for focus servo are discussed for better interface of optical flying head on thin cover layered plastic disk to eliminate focus error due to the non-uniformity of cover layer thickness and the tolerance of lens assembly. This study gives two simulation results on the flying stability of the OFH. One is the dependence of the flying height and pitch angle variations on the wavelength and amplitude of disk waviness. The other is the flying stability of the slider and suspension system during the dynamic load/unload (U/UL) process.

  • PDF

Mechanism Design and Control Technique of Duct Cleaning Robot with Self-position Recognition (자기위치 인식 가능한 덕트 청소로봇의 메카니즘 설계 및 제어기법)

  • Jang, Woojin;Seo, Myungin;Ha, Junhwan;Park, Kyongtae;Kim, Dong-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.85-95
    • /
    • 2019
  • This work shows how to design a robot structure and to control to overcome obstacles while traveling through ducts of various diameters and shapes by three-legged robot. Circuits are centered in the body to connect the three wheel bodies that are driven around the center body with the 4-section slider link structure. Also, the springs are used to contract and expand the robot legs so that it can be caparable of various environments. Geared motor, spring, and belt were selected based on the static and dynamic calculation to be suitable to horizontal and vertical travels. The center body is equipped with a camera and the distance sensors, and a control algorithms are implemented so that it can be successfully performed in L-type and T-type ducts. Using UWB modules and trilateration algorithm, the location of the duct-cleaning robot inside the duct could be identified successfully.