• Title/Summary/Keyword: 스핀들 모드

Search Result 16, Processing Time 0.023 seconds

Finite Element Analysis of Dynamic Characteristics of HDD Spindle System Considering Supporting Structure with Complex Shape (복잡한 지지구조의 유연성을 고려한 HDD 스핀들 시스템의 유한요소 동특성 해석)

  • 한재혁;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.312-318
    • /
    • 2001
  • This paper suggests the finite element method to analyze the dynamic characteristics of a rotating HDD system including the supporting structure with general shape. The flexible supporting structure was modeled by tetrahedra elements to produce a finite element model of disk-spindle-shaft-housing system and the dynamic characteristics of the HDD system was investigated due to the change of rotating speed. The validity of the presented method was verified by the modal testing. The supporting structure has an crucial effect on lower modes for HDD system, so that it is required to consider the supporting structure to accurately analyze the dynamic characteristics of HDD system.

  • PDF

Vibration Analysis of the Shaft-duplicate Disk System (축-이중 원판계의 진동해석)

  • Chun, Sang-Bok;Lee, Chong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.896-906
    • /
    • 1997
  • The effect of duplicate flexible disks on the vibrational modes of a flexible rotor system is investigated by using an anlytical method based on the assumed modes method. The rotor model to be analyzed consists of duplicate disks on a flexible shaft. In modeling the system, centrifugal stiffening and disk flexibility effects are taken into account. To demonstrate the effectiveness of the method, a hard disk drive spindle system commonly used in personal computers and a simple flexible rotor system with two disks are selected as examples. In particular, the dynamic coupling between the vibrational modes of the shaft and the duplicate disks is investigated with the shaft rotational speed varied.

A study on automation of modal analysis of a spindle system of machine tools using ANSYS (ANSYS를 활용한 공작기계 주축 시스템의 진동 모드 해석 자동화에 관한 연구)

  • Lee, Bong-Gu;Choi, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2338-2343
    • /
    • 2015
  • An analytical model was developed in this study and then implemented into a tool for automation of FEA (Finite Element Analysis) of a spindle system for natural frequencies and modes in the universal FEA software, ANSYS. VBA of EXCEL was used for the implementation. It allowed graphic user interfaces (GUIs) to be developed for a user to interact with the tool and, in addition, an EXCEL spreadsheet to be used for data arrangement. A code was developed in the language of ANSYS to generate the geometric model of the spindle system, sequentially to construct the analytical model based on the information in the GUIs, and finally to perform computation for the FEA. Its automation of the model generation and analysis can help to identify a near optimal design of the spindle system under design in minimum time and efforts.

Dynamics of a HDD spindle system due to the change of FDBs (유체베어링의 설계변화에 따른 HDD 스핀들 시스템의 동특성 해석)

  • Park, Ki-Yong;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.407-413
    • /
    • 2008
  • This paper investigates the dynamics of a HDD spindle system due to the change of FDBs. Flying height of the HDD spindle system is determined through the static analysis of the FDBs, and the stiffness and damping coefficients are calculated through the dynamic analysis of the FDBs. Free vibration characteristics and shock response of the HDD spindle system are analyzed by using the finite element method and the mode superposition method. Experimental modal test is also performed to verify the accuracy of the proposed method. This research shows that the stiffness coefficients of journal heating mostly affect the rocking frequencies because their magnitude are within the range of the stiffness of supporting structure. It also shows that the damping coefficients of thrust bearing mostly affect the axial frequency because the stiffness of thrust bearing is much smaller that that of supporting structure.

  • PDF

Effects of a drawbar and a rotor in dynamic characteristics of a high-speed spindle (드로우바와 로터가 고속주축계의 동적 특성에 미치는 영향)

  • Chung Won-Jee;Lee Choon-Man;Lee Jung-Hwan;Lim Jeong-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.139-146
    • /
    • 2006
  • The spindle system with a built-in motor can be used to simplify the structure of machine tools, to improve the machining flexibility of machine tools, and to perform the high speed machining. For more quantitative analysis of a built-in motor's dynamic characteristics, that of tile mass and stillness effects are considered. And the drawbar in the spindle can be in various condition according to supporting stiffness between drawbar and shaft. Therefore, in this paper following items are performed and analyzed : 1. Modal characteristics of the spindle. 2. Analysis of rotor's mass and stiffness effects. 3. Modal characteristics of the spindle including drawbar, rotor and tool. The results show enough stiff supports must be provided between shaft and drawbar to prevent occurring drawbar vibration lower than the natural frequency of 1st bending mode of the spindle, and considering the mass and stiffness of built-in motor's rotor is important thing to derive more accurate results.

Analysis of Dynamic Characteristics of A High-speed Milling Spindle with a Drawbar and a Built-in Motor (고속 주축계에서 드로우바와 내장형 모터가 주축계의 동적 특성에 미치는 영향 분석)

  • Lim J.S.;Lee C.M.;Chung W.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1640-1643
    • /
    • 2005
  • This paper presents analysis of dynamic characteristics of a high-speed milling spindle with a drawbar and a built-in motor. The spindle system with a built-in motor can be used to simplify the structure of machine tools, to improve the machining flexibility of machine tools, and to perform the high speed machining. In this system the shaft is usually assumed as a rigid rotor. In this paper, the modal characteristics of drawbar in high-speed milling spindle system due to supporting stiffness between drawbar and shaft and considering the mass and stiffness effects of the built-in motor's rotor are analyzed by numerical method. The result shows enough stiff supports must be provided between shaft and drawbar to prevent occurring drawbar vibration lower than the natural frequency of 1st bending mode of spindle. And considering the mass and stiffness of built-in motor's rotor is important thing to derive more accurate results.

  • PDF