• 제목/요약/키워드: 스핀들시스템

검색결과 83건 처리시간 0.026초

지지구조와 헤드-서스펜션-액츄에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석 (Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Considering the Flexibility of Supporting Structures and an Head-Suspension-Actuator in a HDD)

  • 서찬희;이호성;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.128-135
    • /
    • 2006
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts tue vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

  • PDF

고속 스핀들 전동기 구동을 위한 자기식 엔코더 구성에 관한 연구 (The Study on the Composition of the Encoder for Driving the High Speed Spindle Motor)

  • 최철;김철우;이상훈
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권5호
    • /
    • pp.253-259
    • /
    • 2005
  • Magnetic encoder with relatively low pulse per rotation is generally used for detecting speed of the high-speed rotating machine. It is due to the fact of the mechanical problems of vibration and bearing stiffness and also the limit of maximum output pulse of the mounted encoder. The magnetic encoder is divided into two types, that is, toothed gear-wheel method and magnetic wheel method according to the shape of the rotation disk. In case of detecting speed by the tooth gear-wheel, the encoder itself can be acted as the additional inertia where the number of tooth determining the output pulse and the width of the wheel detecting the change of the magnetic flux density are relatively enough large considering the volume of the rotating machine. While the magnetic wheel method has the limit of the magnetizing number of the ring magnet, there is relatively few, if nv, the influence of inertia on the machine. In this paper, it is proposed a simple magnetic wheel encoder suited for the high speed rotating machine and the method of signal processing and the output characteristics are examined through the V/F operation of max 48,000(rpm) and 2.4(KW) spindle motor.

가공 오차를 고려한 스핀들 시스템의 동적 특성 해석 (Dynamic Analysis of a Tilted HDD spindle system due to Manufacturing Tolerance)

  • 곽규열;김학운;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.852-858
    • /
    • 2007
  • This paper investigates the dynamic characteristics of a tilted HDD spindle system with fluid dynamic bearings (FDBs). Tilting motion of a HDD spindle system may be caused by improper manufacturing tolerance, such as imperfect cylindricity between shaft and sleeve of FDBs, imperfect perpendicularity between shaft and thrust as well as the gyroscopic moment of the unbalanced mass of the rotating part. Tilting motion may result in the instability of the HDD spindle system and it may increase the disk run-out to limit memory capacity. This research proposes a modified Reynolds equation for the coupled journal and thrust FDBs to include the variable film thickness due to the cylindricity and the perpendicularity. Finite element method is used to solve the Reynolds equation for the pressure distribution. Reaction forces and friction torque are obtained by integrating the pressure and shear stress, respectively. The dynamic behavior is determined by solving the equations of a motion of a HDD spindle system in six degrees of freedom with the Runge-Kutta method to study whirling and tilting motions. This research shows that the cylindricity and the perpendicularity increase the tilting angle and whirl radius of the rotor.

  • PDF

베어링 스팬상에 기어구동축을 갖는 스핀들 베어링 시스템의 정적 및 동적 해석방법에 관한 연구 (Static and Dynamic Characteristics of the Spindle Bearing System with a Gear Located on the Bearing Span)

  • 최진경;빅규열;이대길
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1477-1485
    • /
    • 1996
  • Since the spindle bearing systme is the main source of the total cutting point compliance of machine tool structures, in this work, the static and dynamic characteristics of the spndle bearing systme driven by the gear located on the bearing span were investigated using analytical and finite elemtn methods to improve the performance of the spindle bearing system. Based on the theretical results, a specially designed prototype spindle bvearing systme was manufactured. Using the manufactured spindle bearing system, the static and dynamic characteristics were measured. From the comparison of the experimental results with the theoretical results, it was found that the finite elemetn method predicted well the static and dynamic characteristics of the spindle bearing system.

자기베어링으로 지지된 연삭 스핀들의 런아웃 제어 -LMS Feedforward 제어를 이용한 실험적 해석- (Runout Control of Mgenetically Suspended Grinding Spindle - Experimental Analysis of Adaptive LMS Feedforward Control Method -)

  • 노승국;경진호;박종권;최언돈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.997-1001
    • /
    • 2000
  • In this paper, the case studies of reducing rotational errors is theoretically done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well finished surface, this runout can cause a rotation error amplified by feedback control system. The adaptiveed forward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The electrical runout form the rear sensor target of grind spindle is about 70$\mu\textrm{m}$ with harmonic frequencies. The rotor orbit size in rear bearing is reduced about to 5$\mu\textrm{m}$ due to 1X and 2X rejection by feedforward control.

  • PDF

HDD 스핀들 시스템에 사용되는 저널과 트러스트가 결합된 유체 동압 베어링의 홈 위치에 따른 동특성 해석 (Dynamic Characteristics of a Coupled Journal and Thrust Hydrodynamic Bearing in a HDD Spindle System Due to Groove Location)

  • 윤진욱;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.304-311
    • /
    • 2001
  • This research numerically analyzes the dynamic characteristics of a coupled journal and thrust hydrodynamic bearing due to its groove location which has the static load due to the weight of a rotor in the axial direction and the dynamic load due to its mass unbalance in the radial direction. The Reynolds equation is transformed to solve a plain member rotating type of journal bearing(PMRJ), a grooved member rotating type of journal bearing (GMRJ), a plain member rotating type of thrust bearing (PMRT) and a grooved member rotating type of thrust bearing (GMRT). FEM is used to solve the Reynolds equations in order to calculate the pressure distribution in a fluid film. Reaction forces and friction torque are obtained by integrating the pressure and shear stress along the fluid film, respectively. Dynamic behaviors, such as whirl radius or floating height of a rotor, are determined by solving its nonlinear equations of motion with the Runge-Kutta method. This research shows that the groove location affects the pressure distribution in the fluid film and consequently the dynamic performance of a HDD spindle system.

  • PDF

비대칭 그루브 저널 베어링으로 지지되는 하드디스크 스핀들 시스템의 동특성 해석 (Analysis of the Dynamic Characteristics of a HDD Spindle System Supported by Asymmetrically Grooved Journal Bearings)

  • 이상훈;김학운;장건희;김철순
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.748-752
    • /
    • 2004
  • Fluid dynamic bearings (FDBs) have been replacing ball bearings of the HDD spindle motor very rapidly. But there are several demerits of HDB, such as high friction torque, variable viscosity of the fluid lubricant depending on operating temperature, low stiffness, and etc. Eccentricity is one of the major parameters which affects the static and dynamic characteristics. As the static eccentricity is larger, the stiffness and the damping coefficients become bigger. But friction torque is relatively unaffected by the static eccentricity. This research proposes a new type of journal bearing with asymmetric journal grooves which results in better dynamic characteristics. The static and dynamic characteristics of the new journal bearing are investigated by solving the Reynolds' equation with FEM, and the transient analysis is performed to predict the dynamic behavior of rotor by solving the equations of motion of a HDD spindle system with Runge-Kutta method. The result shows that the proposed Journal bearings have much bigger stiffness and damping coefficients compared with the conventional symmetric ones. And consequently, it has smaller whirl radius and tilting angle.

  • PDF

하드디스크 드라이브에 있어서 스핀들모터의 구조적 가진에 따른 시스템의 소음 특성에 관한 연구 (A Study On The Acoustic Noise Characteristics of Hard Disk Drive Due To The Structural Excitation Of Spindle Motor)

  • 손영;황태연;강성우;한윤식;구자춘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1549-1554
    • /
    • 2000
  • HDD structure is excited by the dynamic motion of disk-spindle motor components. Those excitations which are generated at stator and magnet rotor, at bearings and from disk dynamics, are transmitted through motor spindle and flange to HDD cover and base. The operational deflection shape measurement can show the structural excitation patterns at the most influent frequency on the acoustic noise level. One of those components is the axial excitation along spindle, and the other is the local orbital excitation at contact area of motor flange and base. To make a reduction of those structural transmission excitations, the structure of spindle motor is modified to the direction of reinforcement at transmission path without change of bearings, magnet and coil. Some excitation of spindle motor component carrying out essential function is unavoidable. So it is the efficient way of HDD noise improvement to control the structural transmission of excitation.

  • PDF

초정밀 FTS 시스템을 이용한 CNC Lathe 스핀들 이송오차 보상 및 가공정밀도 향상 (The Improvement of Machining Accuracy and Compensation of Feeding Error in CNC Lathe Using Ultra Precision Fast Tool)

  • 김재열;곽남수
    • Tribology and Lubricants
    • /
    • 제27권1호
    • /
    • pp.13-18
    • /
    • 2011
  • The ultra-precision products which recently experienced high in demands had included the large areas of most updated technologies, for example, the semiconductor, the computer, the aerospace, the media information, the precision machining. For early 21st century, it was expected that the ultra-precision technologies would be distributed more throughout the market and required securing more nation-wise advancements. Furthermore, there seemed to be increasing in demand of the single crystal diamond tool which was capable of the ultra-precision machining for parts requiring a high degree of complicated details which were more than just simple wrapping and policing. Moreover, the highest degree of precision is currently at 50 nm for some precision parts but not in all. The machining system and technology should be at very high performed level in order to accomplish this degree of the ultra-precision.

유체동압베어링을 사용하는 하드디스크 드라이브 스핀들 시스템에서 발생하는 정전기 방전에 관한 실험적 연구 (Experimental Study on the Electrostatic Discharge in the HDD Spindle System Using Fluid Dynamic Bearings)

  • 강민구;장건희
    • 한국소음진동공학회논문집
    • /
    • 제16권1호
    • /
    • pp.75-80
    • /
    • 2006
  • This paper introduces the mechanism of the ESD(electrostatic discharge) in the HDD spindle system using FDBs(fluid dynamic bearings). When a HDD(hard disk drive) spindle system is rotating, triboelectric charging occurs in the FDBs through the friction between the lubricant and the rotating shaft or between the lubricant and stationary sleeve. And this electrostatic charge is accumulated in the rotating parts of the HDD spindle system because they are insulated from the ground by the lubricant. This research shows experimentally that the behavior of electric charge and discharge in the FDB spindle system is the same as that of a capacitor. It also measures the electrostatic voltage difference between the rotating and stationary parts in the FDB spindle system due to the change of humidity, supporting load and motor speed. This research shows that the control of ESD is required in the HDD spindle system using FDBs, because the electrostatic charge accumulated in the FDB spindle system may cause the breakdown damage of the GMR head and data loss consequently.