• Title/Summary/Keyword: 스프링 하중

Search Result 239, Processing Time 0.027 seconds

Performance Evaluation of Multi-Friction Dampers for Seismic Retrofitting of Structures (구조물 내진보강을 위한 다중 마찰댐퍼의 성능 평가)

  • Kim, Sung-Bae;Kwon, Hyung-O;Lee, Jong-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.54-63
    • /
    • 2022
  • This paper is a study on the friction damper, which is one of the seismic reinforcement devices for structures. This study developed a damper by replacing the internal friction material with ultra high molecular weight polyethylene (UHMWPE), a type of composite material. In addition, this study applied a multi-friction method in which the internal structure where frictional force is generated is laminated in several layers. To verify the performance of the developed multi-friction damper, this study performed a characteristic analysis test for the basic physical properties, wear characteristics, and disc springs of the material. As a result of the wear test, the mass reduction rate of UHMWPE was 0.003%, which showed the best performance among the friction materials based on composite materials. Regarding the disc spring, this study secured the design basic data from the finite element analysis and experimental test results. Moreover, to confirm the quality stability of the developed multi-friction damper, this study performed an seismic load test on the damping device and the friction force change according to the torque value. The quality performance test result showed a linear frictional force change according to the torque value adjustment. As a result of the seismic load test, the allowable error of the friction damper was less than 15%, which is the standard required by the design standards, so it satisfies the requirements for seismic reinforcement devices.

An Electro-magnetic Air Spring for Vibration Control in Semiconductor Manufacturing (반도체 생산에서 진동 제어를 위한 전자기 에어 스프링)

  • Kim, Hyung-Tae;Kim, Cheol-Ho;Lee, Kang-Won;Lee, Gyu-Seop;Son, Sung-Wan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1128-1138
    • /
    • 2010
  • One of the typical problems in the precise vibration is resonance characteristics at low frequency disturbance due to a heavy mass. An electro-magnetic(EM) air spring is a kind of vibration control unit and active isolator. The EM air spring in this study aims at removing the low frequency resonance for semiconductor manufacturing. The mechanical and electronic parts in the active isolator are designed to operate under a weight of 2.5 tons. The EM spring is floated using air pressure in a pneumatic elastic chamber and actuated by EM levitation force. The actuator consists of a EM coil and a permanent magnetic plate which are installed inside of the chamber. An air mount was constructed for the experiment with a stone surface plate, 4 active air springs, 4 gap sensors, a DSP controller, and a multi-channel power amp. A PD control method and operating logic was applied to the DSP. Simulation using 1/4 model was carried out and compared with the experiments. The time duration and maximum peak at resonance frequency can be reduced sharply by the proposed system. The results show that the active system can avoid the resonance caused by the natural frequency of the passive system.

Nonlinear Analytical Model of Unreinforced Masonry Wall using Fiber and Shear Spring Elements (파이버 및 전단 스프링요소를 이용한 비보강 조적벽체의 비선형 해석모델)

  • Hong, Jeong-Mo;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.283-291
    • /
    • 2018
  • This study intends to develop an analytical model of unreinforced masonry(URM) walls for the nonlinear static analysis which has been generally used to evaluate the seismic performance of a building employing URM walls as seismic force-resisting members. The developed model consists of fiber elements used to capture the flexural behavior of an URM wall and a shear spring element implemented to predict its shear response. This paper first explains the configuration of the proposed model and describes how to determine the modeling parameters of fiber and shear spring elements based on the stress-strain curves obtained from existing experimental results of masonry prisms. The proposed model is then verified throughout the comparison of its nonlinear static analysis results with the experimental results of URM walls carried out by other researchers. The proposed model well captures the maximum strength, the initial stiffness, and their resulting load - displacement curves of the URM walls with reasonable resolution. Also, it is demonstrated that the analysis model is capable of predicting the failure modes of the URM walls.

Vertical Vibration Isolator for Reducing Structural Vibration (구조물의 진동저감을 위한 수직형 면진장치)

  • Choi, Sanghyun;Baek, Joon-Ho;Lee, You In
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.2
    • /
    • pp.197-203
    • /
    • 2012
  • In these days, the design of a structure for reducing or eliminating noise and vibration is getting more important, as the social demands for reducing environmental pollution rise. In this paper, the basic concept and performance verification test results of the recently developed vertical vibration isolator are presented. The isolator attenuates vibration using the damping action from the friction plane made of PTFE and provides the restoring force from the polyurethane springs arranged in vertical and horizontal directions. The performance verification tests consist of a test for identifying performance change during load rate variation and a test for confirming the force-displacement relationship assumption in vibration force range.

An Analytical Study on the behavior of the Pier considering Soil Conditions (지반 조건을 고려한 잔교의 거동에 관한 해석적 연구)

  • Sin, Ha Myung;Yoon, Gi Yong;Park, Jong Sup
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.214-214
    • /
    • 2011
  • 최근 국내 연안역에는 관광의 활성화 등의 목적으로 잔교가 많이 가설되고 있다. 그러나 잔교의 설계에 대한 규정이 없어 현재는 항만 및 어항설계기준을 준용하여 설계하고 있는 실정이며, 또한 지역적 특성을 반영하지 못하고 건설되어 과다한 단면을 사용하는 경우가 많고, 경제성이나 경관성을 갖추지 못한 경우가 많은 실정이다. 본 연구에서는 합리적인 잔교용 설계기준을 마련하기 위한 기초적인 연구로써 지반조건을 고려한 잔교의 거동특성을 분석하고자 하였다. 이를 위하여 해석모델을 개발하고, 다양한 해석조건에 대한 해석을 수행하여 그 특성을 정리하고자 하였다. 이를 통하여 잔교의 합리적인 구조시스템을 개발하고, 설계기준을 정리하는데 이바지 하고자 한다. 이 연구에서는 서해안의 연약지반을 고려하기 위해 지반스프링을 이용한 해석모델을 개발하고, 다양한 해석조건에 대한 해석을 수행하여 그 특성을 파악하고자 하였다. 조립식 잔교는 Capbeam, Wood Deck, ㄱ형강, Pile로 네 가지의 구성으로 이루어지고, 이 네 가지 요소의 재료는 강재로 사용하였으며, 하중에 대해서는 항만 및 어항설계기준을 준용하여 군중하중 $5kN/m^2$, 월파력 $20.1kN/m^2$을 사용하였고, 풍하중은 도로교 설계기준을 이용하여 산정한 $3.309kN/m^2$을 사용하였다. 재하하중 및 하중에 대한 최적단면에 대한 연구를 활용하여 본 연구에서는 지반조건의 영향, Capbeam과 Pile의 크기변화, 사항 등의 영향을 고려하였을 때 각 구성요소에서 발생하는 단면력의 변화와 축력, 접합부 모멘트 등의 외력과 내력을 정리하여 잔교의 거동특성을 파악하고자 하였다. 다양한 변수해석을 수행하기 위하여 지반조건을 고려한 2D 해석모델을 개발하였으며, 본 연구에서 고려한 군중하중, 풍하중, 월파력의 설계하중 중에서는 월파력이 지배적인 것을 알 수 있었다. Pier의 지름이 증가 하면 작용하는 월파력이 커지고 따라서 단면력이 증가하는 것을 알 수 있었다. 그러므로 합리적인 Pier의 크기 결정이 경제적이고 경관이 우수한 잔교 건설에 중요 요인임을 알 수 있다. 본 연구는 잔교의 설계기준 정립에 기초자료로 활용할 수 있을 것으로 판단되나, 보다 합리적인 잔교의 설계와 시공을 위해서는 지속적인 연구가 필요한 것으로 판단된다.

  • PDF

An Analysis Model of the Secondary Tunnel Lining Considering Ground-Primary Support-Secondary Lining Interaction (지반-1차지보재-2차라이닝의 상호작용을 고려한 터널 2차라이닝 해석모델)

  • 서성호;장석부;이상덕
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.107-114
    • /
    • 2002
  • It is the common practice to over design the reinforcement for the secondary tunnel lining due to the lack of rational insight into the ground loosening loads. and due to the conservative application of the empirical design methods. The main loads of the secondary lining are the ground Loosening loads and the ground water pressure, and the ground load is critical in the reinforcement design of the secondary lining in the case of drained tunnel. If the external load is absent around a tunnel, the reasons of the load far secondary tunnel lining are the deterioration of the primary supports such as shotcrete, steel rib, and rockbolts. Accordingly, the analysis method considering the ground-primary supports-secondary lining interaction should be required tar the rational design of the secondary tunnel lining. In this paper, the interaction was conceptually described by the simple mass-spring model and the load transfer from the ground and primary supports to the secondary lining is showed by the ground-primary supports-secondary lining reaction curves fur the theoretical solution of a circular tunnel. And also, the application of this proposed model to numerical analysis is verified in order to check the potential far the tunnel with the complex analysis conditions.

The design of Vibration Isolation for Ultra-Precision Machine (초정밀 가공기의 방전시스템 설계기술연구)

  • 박종권
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.171-176
    • /
    • 1993
  • 초정밀 공작기계의 구조물은 Sub-micron의 운동정밀도를 갖추어야 초정밀기계로서의 기능이 유지된다. 특히 가공기의 베드구조물은 구동요소간의 상대 위치를 정.동적으로 규정 해주는 중요한 기본구조물이므로 고강성, 고쇠감성,열안정성, 경년변화에 대한 치수의 안정성등의 성능이 요구되며, 이를위해 공간적인 형상 설계 및 구조재의 선정에 고도의 기술이 필요하다. 따라서 본 연구는 낮은 고유진동수의 특성을 갖으면서 하중의 설치높이의 변화에서도 고유진동수가 일정히 유지되고 또한 구조물의 중심변화에 대한 수평조절이 가능하면서 자동제어가 가능한 공기스프링을 초정밀 가공기의 방진시스템으로 활용방안에 대하여 연구하였다.

  • PDF

Incremental Model Formulation of Creep under Time-varying Stress History (시간이력 하중을 받는 콘크리트의 점증적 크리프 모델)

  • Park, Yeong-Seong;Shin, Dong-Hun;Lee, Yong-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.755-761
    • /
    • 2014
  • Internal or external restraint of concrete strain due to drying shrinkage and creep in concrete structures causes mechanical strain and becomes a source of persistent change in creep-causing stress conditions. Mathematical modeling to incorporate the persistent change of creep-inducing stress is generally achieved with consideration of the ages of concrete and concrete properties at the times of loadings, and stress history. This paper presents an incremental format of creep model based on parallel creep concept to depict the creep under time-varying stress history in developing creep strain. Laboratory experiments are carried out to validate the performance of the presented creep model. Typical creep phenomena are addressed through the comparisons between the measured and predicted creep strains.

Simulation of Plastic Collapsing Load and Deformation Behaviours(I) (소성 붕괴하중 및 변형거동 해석(1))

  • 김영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2165-2172
    • /
    • 1995
  • Optimization of mesh discretization has been proposed to improve the accuracy of limit analysis solution of collapse load by using the Rigid Body Spring Model(R. B. S. M) under the plane strain condition. Moreover, the fracture behaviour of materials was investigated by employing the fracture mechanism of a spring connecting the triangular rigid body element. It has been clarified that the collapse load and the geometry of slip boundary for optimized mesh discretization were close to those of the slip line solution. Further, the wedge-shaped fracture of a cylinder under a lateral load and the central fracture of a strip in the drawing process were well simulated.

Structural Analysis of Tension Controller Spring (텐션 컨트롤러 스프링의 구조해석)

  • Lee, Jong-Sun;Baik, Doo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • In this research, structural analysis was conducted by applying ANSYS commercial code in order to evaluate deflection quantitatively when each weight of tension controllers was centered and weights and moments on a controller controlling tension amounts was varied in a machinery manufacturing flexible flat cable. Based on the numerical structure analysis, stress, strain and amounts of maximum deformation were obtained and investigated structural validity and was reflected on design of the controller.