• Title/Summary/Keyword: 스프링 접합

Search Result 31, Processing Time 0.03 seconds

Nonlinear Analysis for Negative Moment Distribution of MRS Slab End Joints (비선형 해석에 의한 MRS 슬래브 단부 접합부의 모멘트 분포 연구)

  • Moon, Jeong-Ho;Oh, Young-Hun;Lim, Jae-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.177-184
    • /
    • 2011
  • This paper describes an analytical study on the design approach of PC system with continuous connections at member ends. In multi-ribbed moment resisting slab (MRS) system, double tee members are connected continuously over inverted tee beams with the continuous reinforcements placed within topping concrete. Thus, negative moments are concentrated within the narrow connection area. In order to propose a design method, experimental results of the companion study were examined using detailed nonlinear analysis. Then nonlinear static analysis was used to evaluate the partial continuity effect and the moment redistribution mechanism. Material and cross sectional properties were obtained from experimental results of the companion study. Plastic hinge properties for nonlinear static analysis were modeled with cracking moment, nominal moment, corresponding member deformations, etc. The analysis results showed that a large amount of negative moment of MRS slab can be reduced by applying partial continuity and moment redistribution in MRS joint.

Reinforcement of shield tunnel diverged section with longitudinal member stiffness effect (종방향 부재의 강성효과를 고려한 쉴드 터널 분기부 보강 및 해석기법)

  • Lee, Gyu-Phil;Kim, Do
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.675-687
    • /
    • 2019
  • In recent years, the needs for double deck-tunnels have increased in large cities due to the increase in traffic volume and high land compensation costs. In Korea, a network type tunnel which is smaller than general road tunnels and crosses another tunnel underground is planned. In the shield tunnel joints between the existing shield tunnel and the box-type enlargement section, a partial steel-concrete joint is proposed where the bending moment is large instead of the existing full-section steel joint. In order to analysis the enlargement section of the shield tunnel diverged section to reflect the three-dimensional effect, the two-dimensional analysis model is considered to consider the column effect and the stiffness effect of the longitudinal member. A two-dimensional analysis method is proposed to reflect the stiffness of the longitudinal member and the column effect of the longitudinal point by considering the rigidity of the longitudinal member as the elastic spring point of the connecting part in the lateral model. As a result of the analysis of the model using the longitudinal member, it was considered that the structural safety of the partial steel-concrete joint can be secured by reducing the bending moment of the joint and the box member by introducing the longitudinal member having the stiffness equal to or greater than a certain value.

A Study on Virtual Manufacturing for Total Auto-Body Panel Stamping Processes (차체판넬 스탬핑공정을 위한 가상생산에 관한 연구)

  • Jeong, Dong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1499-1512
    • /
    • 2000
  • The dynamic explicit finite element method and the static implicit finite element method are applied effectively to analyze total auto-body panel stamping processes, which include the forming stage , the trimming stage and the spring-back stage.\The explicit time integration method has better merits in the forming stage including highly complicated three-dimensional contact conditions. On the contrary, the implicit time integration method is better for analyzing spring-back since the complicated contact conditions are removed and the computing time to get the final static state is short. In this work, brief descriptions of the formulation and the factor study are presented. Further, the simulated results for the total auto-body panel stamping processes are shown and discussed. The formability and the weld line movement in stamping with Tailor Welded Blanks were investigated through QTR-OTR-FRT.

Fatigue Fracture Behavior of Laminated Steel with Mild Steel and Spring Steel (연강과 스프링압을 접합한 층상복합 강재의 피로파괴거동에 대한 연구)

  • ;;Kim, Young-Jin;Yum, Young-Ha
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.2 no.3
    • /
    • pp.53-61
    • /
    • 1978
  • This study has been concentrated on the relations between the crack growth rate and the stress intensity factor, the fatigue limit and finally on the condition of the crack propagation along the laminated cross section of the laminated steel under the repeated plane bending through tests. The following results are obtained. 1. The fatigue limit of the laminated steel is higher than the single steel 2. The realtion between the fatigue crack growth rate, dL/dN and Stress intensity factor are ; dL/dN = 2.14 * 10$^{-11}$ $K^{2.95}$ for SUP 9 dL/dN = 1.70 * 10$^{-11}$ $K^{2.95}$ for SMS dL/dN = 9.77 * 10$^{-11}$ $K^{2.95}$ for SPMS dL/dN = 3.57 * 10$^{-8}$ $K^{1.53}$ for SPMM dL/dN = 5.5O * 10$^{-8}$ $K^{1.53}$ for MLD 3. The crack propagation of the laminated steel also tends to be completed through 3 steps; The first step proceeds swiftly, in a second slowly for a long time and last very rapidly for a short moments.

Influence of Column Base Rigidity on Behavior of Steel Buildings (강구조물 지지부의 강성도가 구조물 거동에 미치는 영향)

  • 권민호;박문호;장준호;박순응
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.165-172
    • /
    • 2002
  • Generally, the steel rigid frame has been analyzed using finite element analysis tools. While many efforts have been poured into the understanding and accurate prediction for the nonlinear behavior of the columns and beam-columns connections, the base of the columns are modeled as simply hinged or fixed. However, the base of the steel columns practically is neither fixed not hinged. It behaves as semi-rigid. In this paper, the supports of the columns we modeled as semi-rigid and the importance of such approach in moment-resisting columns is evaluated. Two typical buildings designed by the US specification are modeled and analyzed by the finite element based on stiffness method and flexibility method. The column bases of three-story buildings are modeled as rotational springs with a varying degree of stiffness and strength that simulates the semi-rigidity of the base. Depending on the degree of stiffness and strength, the semi-rigidity varies from the hinged to the fixed. Buildings with semi-rigid column bases behaves similarly to the building with fixed bases. It has been numerically observed through the pushover and nonlinear time history analyses that the decrease of the stiffness of the column base induces the rotational demand on the int air beams. an increase of rotation demands on the first store connections and lead to a soft-story mechanists Due often to the construction and environmental effects, undesired reduction of column base stiffness may cause an increase of rotation demands on the first store connections and lead to a soft-story mechanism.

A Study on the Composite Behavior of Simply Supported Composite Girders Considering the Partial Interaction (불완전 합성율을 고려한 단순합성형의 합성거동에 관한 연구)

  • Yong, Hwan Sun;Kim, Seok Tae;Park, Jae Yil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.543-555
    • /
    • 1997
  • Generally, in a steel-concrete composite gilder, the shear connector which was constructed between concrete deck and steel girder should have enough stiffness to behave as one body, because the conformity between plate and concrete deck is influences by the stiffness and spacing of the shear connectors. If the stiffness of shear connectors are insufficient, slip would happen at the contact surface. Partial interaction is the case that takes account of slips. In this paper, an easy method is presented to evaluate the stiffness or spacing of the shear connector according to the degree of imperfection without difficult calculations for a composite gilder with partial interaction. Also, the horizontal shearing force applied to the shear connector and the longitudinal axial force, which is occurs at contact surface between concrete deck and steel girder, have been presented in a simple influence line that is various to the parameters of sectional properties, degree of imperfection and applied load points. Furthermore, through the case study, it determined the relationships between the degree of imperfection and the follows 1) spring constants 2) axial force and horizontal shearing force 3) stress and neutral axis by using the partial differential equation based on Newmark's Partial Interaction Theory.

  • PDF

Analytical Model of Beam-Column Joint for Inelastic Behavior Under Various Loading History (철근콘크리트 보-기둥 접합부 해석모델)

  • 유영찬;서수연;이원호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.120-130
    • /
    • 1994
  • The purpose of this study is to propose the analytical model for the hysteretic behavior of Reinforced Concrete bearn-column joints under various loading history. Discrete line elernents , YVith inelastic rotational spring was adopted to consider the movement of plastic hinging zone influenced by the details of longitudinal reinforcements. Also hysteretic model was constructed by excluding such variables which can not be utilized in dynamic analysis of Reinforced Concrete. structure that it will be adoptable in two-dimensional inelastic frame ardysis with 6-DOF. From the analysis of previous test results, it was found that stiffness deterioration caused by inelastic hysteretic loadings can be predicted by the functron of basic pinching coefficients, ductility ratio.and yield strength ratio of members. Strength degradation coefficients were newly proposed to explain the difference of inelastic behavior of members caused by spacing ratio of transverse steel and sectlon aspect ratio. The energy dissipation capacities calculated using the analytical model proposed in thls paper show a good agreements w~lh test results by an error of 10~20%.

An Analytical Study on the behavior of the Pier considering Soil Conditions (지반 조건을 고려한 잔교의 거동에 관한 해석적 연구)

  • Sin, Ha Myung;Yoon, Gi Yong;Park, Jong Sup
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.214-214
    • /
    • 2011
  • 최근 국내 연안역에는 관광의 활성화 등의 목적으로 잔교가 많이 가설되고 있다. 그러나 잔교의 설계에 대한 규정이 없어 현재는 항만 및 어항설계기준을 준용하여 설계하고 있는 실정이며, 또한 지역적 특성을 반영하지 못하고 건설되어 과다한 단면을 사용하는 경우가 많고, 경제성이나 경관성을 갖추지 못한 경우가 많은 실정이다. 본 연구에서는 합리적인 잔교용 설계기준을 마련하기 위한 기초적인 연구로써 지반조건을 고려한 잔교의 거동특성을 분석하고자 하였다. 이를 위하여 해석모델을 개발하고, 다양한 해석조건에 대한 해석을 수행하여 그 특성을 정리하고자 하였다. 이를 통하여 잔교의 합리적인 구조시스템을 개발하고, 설계기준을 정리하는데 이바지 하고자 한다. 이 연구에서는 서해안의 연약지반을 고려하기 위해 지반스프링을 이용한 해석모델을 개발하고, 다양한 해석조건에 대한 해석을 수행하여 그 특성을 파악하고자 하였다. 조립식 잔교는 Capbeam, Wood Deck, ㄱ형강, Pile로 네 가지의 구성으로 이루어지고, 이 네 가지 요소의 재료는 강재로 사용하였으며, 하중에 대해서는 항만 및 어항설계기준을 준용하여 군중하중 $5kN/m^2$, 월파력 $20.1kN/m^2$을 사용하였고, 풍하중은 도로교 설계기준을 이용하여 산정한 $3.309kN/m^2$을 사용하였다. 재하하중 및 하중에 대한 최적단면에 대한 연구를 활용하여 본 연구에서는 지반조건의 영향, Capbeam과 Pile의 크기변화, 사항 등의 영향을 고려하였을 때 각 구성요소에서 발생하는 단면력의 변화와 축력, 접합부 모멘트 등의 외력과 내력을 정리하여 잔교의 거동특성을 파악하고자 하였다. 다양한 변수해석을 수행하기 위하여 지반조건을 고려한 2D 해석모델을 개발하였으며, 본 연구에서 고려한 군중하중, 풍하중, 월파력의 설계하중 중에서는 월파력이 지배적인 것을 알 수 있었다. Pier의 지름이 증가 하면 작용하는 월파력이 커지고 따라서 단면력이 증가하는 것을 알 수 있었다. 그러므로 합리적인 Pier의 크기 결정이 경제적이고 경관이 우수한 잔교 건설에 중요 요인임을 알 수 있다. 본 연구는 잔교의 설계기준 정립에 기초자료로 활용할 수 있을 것으로 판단되나, 보다 합리적인 잔교의 설계와 시공을 위해서는 지속적인 연구가 필요한 것으로 판단된다.

  • PDF

A Study of material analysis and its experimentation of metamorphosis and its utilities in Copper Alloy plates for contemporary metal craft (현대금속공예용 동합금판의 재료분석과 형질변환 실험 및 응용에 관한 연구)

  • Lim, Ock-Soo
    • Archives of design research
    • /
    • v.17 no.4
    • /
    • pp.241-250
    • /
    • 2004
  • In this research, the copper alloy plates C2200, C5210, C7701, C8113 were selected to make datum and to identify further usage of metal craft experimentation. For its experimentation, the general welding and TIG welding methods were researched; for 2nd experimentation, the Reticulation and Electroforming skill's differences in color and temperature were researched. With these methods 3 different kinds of works are introduced for sample studies. For this research, Dr. Lee, Dong-Woo who works in Poongsan Metal Co, supported 4 kinds of copper alloy metals. Which are Commercial bronze (Cu-Zn), Deoxidiged Copper(Cu-Sn-P), Nickel Silver (Cu-Ni-Zn), and White Bronze (Cu-Ni); they were applied partly and wholly by the method of Laminatin, Reticulation, Fusing, and Electroforming skills. In case of C2200, the brass, the A. C. TIG welding method is better under 2mm slight plate; the D.C. TIG welding is better upper 2mm plate; and 250~300$^{\circ}C$ is recommended for remain heat treatment. In case of C5210, not having Hydrogen in high temperature return period, doesn't need Oxygen in high temperature and hardening in comparative high temperature neither, it is good for welding. It contains Sn 2-9% ad P 0.03-0.4% generally; and in accordance with the growth rate of Sn contain amount, the harden temperature boundary become broad. In case of cold moment after welding, they are recommended that higher speed TIG welding, smaller melting site and less than 200$^{\circ}C$ for pre-heating temperature. In case of C7701, the 10-20% Ni, 15-30% Zn are widely used.. If it is upper 30% Zn, it become (${\alpha}+{\beta}$) system and adhesive power rate become lower, and the productivity become lower in low temperature but the productivity become higher in high temperature. Nickel Silver's resistance of electricity is well; and the heatproof and incorrodibility is good, too. Lastly, in case of C8113, good at persistence in salty and grind; high in strength of high temperature. In case of white brass, contain 10-30% Nickel and hardened in high temperature and become single phrase. For these reason, the crystallization particles easily become large, if the resistance become higher small amount of Pb, P, S separation rate become higher.

  • PDF

Development of A Component and Advanced Model for The Smart PR-CFT Connection Structure (스마트 반강접 (PR) 콘크리트 충전 강재 합성 (CFT) 접합 구조물에 대한 해석모델의 개발)

  • Seon, Woo-Hyun;Hu, Jong-Wan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.1-10
    • /
    • 2011
  • This study investigates the performance of composite (steel-concrete) frame structures through numerical experiments on individual connections. The innovative aspects of this research are in the use of connections between steel beams and concrete-filled tube (CFT)columns that utilize a combination of low-carbon steel and shape memory alloy (SMA) components. In these new connections, the intent is to utilize the recentering provided by super-elastic shape memory alloy tension bars to reduce building damage and residual drift after a major earthquake. The low-carbon steel components provide excellent energy dissipation. The analysis and design of these structures is complicated because the connections cannot be modeled as being simply pins or full fixity ones they are partial restraint (PR). A refined finite element (FE) model with sophisticated three dimensional (3D) solid elements was developed to conduct numerical experiments on PR-CFT joints to obtain the global behavior of the connection. Based on behavioral information obtained from these FE tests, simplified connection models were formulated by using joint elements with spring components. The behavior of entire frames under cyclic loads was conducted and compared with the monotonic behavior obtained from the 3D FE simulations. Good agreement was found between the simple and sophisticated models, verifying the robustness of the approach.