• Title/Summary/Keyword: 스프링장치

Search Result 237, Processing Time 0.026 seconds

Dynamic Analysis of Floating Slab Isolation System for Train (철도 방진 슬라브 궤도의 동특성 해석)

  • Han, Hyun-Hee;Lee, Gyu-Seop;Jang, Seung-Yup;Park, Man-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.819-822
    • /
    • 2009
  • 환경 소음,진동 개선의 측면에서 철도 레일 하부로 전달되는 진동 및 구조소음을 효과적으로 차단하기 위하여 국내에서도 탄성 이산지지 구조의 플로팅 슬라브를 적용하는 경우가 증가하고 있다. 플로팅 슬라브 구조설계에 있어 주안점은 방진효율 증대와 슬라브 자체 중량의 2~3배 되는 열차 주행간의 동하중에 대한 열차 주행 안정성을 고려해야 하는 점이며 열차의 고속화 경향에 따라 동하중의 증가는 더욱 커지고 있다. 본 연구에서는 이산지지 방진장치를 적용한 철도 슬라브 궤도의 동특성과 이동질량에 의한 응답을 방진장치의 지지 간격, 스프링 상수 등을 설계변수로 하여 수치해석적 방법으로 시뮬레이션하였다.

  • PDF

A Study on the Development of the Continuous 3D Tube Bending Machine (연속 3 차원 튜브 벤딩장치 개발에 관한 연구)

  • Mun, Hyeon-Jun;Kim, Chung-Sup;Kim, Jong-Doo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.701-706
    • /
    • 2008
  • A continuous 3D tube bending machine has been developed for industrial boiler panel production. The machine consists of a main bender, a sub bender, a side bender, tube feeding rollers and control system that includes data management system. Tube position is controlled by a numerical control system. The bending former can be easily replaced according to the shape of bending form. Reduction of working time and improvement of production capacity from the practice have been achieved by bending a long tube in the machine developed.

Analysis of the Dynamic Characteristics of the In-Arm Type Hydropneumatic Suspension Unit (암 내장형 유기압 현수장치의 동특성 해석)

  • Lee, H.W.;Jo, J.R.;Lee, J.K.;Jang, M.S.;An, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.519-524
    • /
    • 2003
  • In this paper we discuss the dynamic characteristics of the in-arm type hydropneumatic suspension unit(ISU). For this, two accurate models are introduced. The first one is the Benedict-Webb-Rubin equation which is adopted for the spring behavior of a real gas. This equation is applicable for the high pressure of the nitrogen gas which acts as a spring in ISU system. The second one describes the behavior of a damper, which is divided into four parts - jounce-loading, jounce-unloading, rebound-loading and rebound-unloading. This approach gives a good approximation of the real damper system. For the comparison purpose, the numerical results of the dynamic behavior of ISU system using a real gas and an ideal gas are given in the paper.

  • PDF

Nonlinear Parameter Estimation of Suspension System (현가장치의 비선형 설계변수 추정)

  • 박주표;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.281-286
    • /
    • 2003
  • A Suspension system of a car is composed of dampers and springs. The dampers and springs usually have nonlinear characteristics. However, the nonlinear characteristics of the springs and dampers through analytical model cannot agree with the experimental results. Therefore, the nonlinearity of the suing and damper should be known from the experimental results. In this study, the methods of system identification for nonlinear dynamic system in time domain are discussed and the nonlinear parameter estimation lot experimental data of an EF-SONATA car was done. The results show that a cubic and a coupled term should be considered to model the suspension system.

  • PDF

A Study on the Vibration of 2-Stage Gear System Considering the Change of Gear Meshing Stiffness and Imbalance of Motor (기어 물림부의 스프링강성 변화와 구동기의 불균형을 고려한 2단 기어장치의 진동에 관한 연구)

  • 정태형;이정상;최정락
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.8-14
    • /
    • 2001
  • We develop a method to analyze dynamic behavior off multi-stage gear train system. The example system consists of three shafts supported by ball bearings at the ends of them and two pairs of spur gear set. For exact analysis, the meshing tooth pair of gear set is modeled as spring and damper having time-dependent meshing stiffness and damping. The bearing is modeled as spring. The result of this analysis is compared to that of other model having mean mesh stiffness. The effect of the excitation force by the unbalance off rotor off motor is also analyzed. Finally, the change ova natural frequency of the whole system due to the change of an angle between three shafts is compared in each case, and from this analysis, the avoiding angle for design is advised.

  • PDF

Nonlinear Parameter Estimation of Suspension System (현가장치의 비선형 설계변수 추정)

  • 박주표;최연선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.158-164
    • /
    • 2003
  • The suspension system of cars is composed of dampers and springs, which usually have nonlinear characteristics. The nonlinear characteristics make the differences in the results of analytical models and experiments. In this study, the nonlinear system identification method which does not assume a special form for nonlinear dynamic systems and minimize the error by calculating the error reduction ratio is devised to estimate the nonlinear parameters of the suspension system of an EF-SONATA car from the field running test data. The results show that the spring has a cubic nonlinear term and the damper has a coupled nonlinear term. Also, the numerical results with the estimated nonlinear parameters agree well with the field test data for the different running speeds.

A Study on Transferred Load Reduction effect of Low Elastic Pad through Dynamic Response Analysis (동적응답해석을 통한 저탄성패드의 전달하중 저감효과 연구)

  • Kim, Hyun-Ju;Lee, Il-Wha;Cho, Guk-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2464-2472
    • /
    • 2011
  • Train runs on high speed and the concrete track is constructed. Rail fastening device needs to reduce elasticity, transferred load, noise, and vibration etc. Consequently, low elastic pad has a great impact of the durability and stability of the track. In this study, discussed in previous studies, static numerical analysis and real scale repeated loading test, followed by dynamic response analysis were implemented. The most distinctive characteristics of the model proposed is to simulate the real wheel behavior on rail. And the main analysis object is to evaluate and compare the deformation characteristics of the transition track while load reduction effect of transfer on roadbed assessed by various low elastic pad.

  • PDF

A Study on Performance Change of Gas Injector with Ambient Temperature Environment (주변 온도환경 변화에 따른 가스 인젝터 성능 변화에 대한 연구)

  • Kim, Ji-Yoon;Yang, Jeong-Jik;Kim, Jin-Ho;Seo, Ii-Won;Lim, Jong-Wan
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.5
    • /
    • pp.18-23
    • /
    • 2018
  • This study tries to analyze the injection amount of injector according to the external environment temperature of CNG vehicle. Especially, We investigated the effect of low temperature environment on gas injector performance by measuring the variation of injection amount under the same conditions as in coldstart condition. This experimental compared two products with different spring characteristics. The experimental device consist of a fuel supply unit, a flowrate measurement unit, a temperature chamber, and an injector control unit (ECU). According to the test result, the initial injection amount of the injector is increased in the low temperature environment and the needle opening time is delayed according to the change of the spring length.

Optimum Evaluation of Reinforcement Cord of Air Spring for the Vehicle Suspension System (자동차 현가장치를 위한 에어스프링 보강코드의 최적 성능평가)

  • Kim, Byeong-Soo;Moon, Byung-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.357-362
    • /
    • 2011
  • Air springs are prevalently used as suspension in train. However, air springs are seldom used in automobiles where they improve stability and comfort by enhancing the impact-relief, breaking, and cornering performance. Thus, this study proposed a new method to analyze air springs and obtained some reliable design parameter which can be utilized in vehicle suspension system in contrast to conventional method. Among air spring types of suspension, this study focused on sleeve type of air spring as an analysis model since it has potential for ameliorating the quality of automobiles, specifically in its stability and comfort improvement by decreasing the shock through rubber sleeve. As a methodology, this study used MARC, as a nonlinear finite element analysis program, in order to find out maximum stress and maximum strain depending on reinforcement cord's angle variation in sleeves. The properties were found through uniaxial tension and pure shear test, and they were developed using Ogden Foam which is an input program of MARC. As a result, the internal maximum stresses and deformation according to the changes of cord angle are obtained. Also, the results showed that the Young's modulus becomes smaller, then maximum stresses decrease. It is believed that these studies can be contributed in automobile suspension system.

The Numerical Analysis and Experimental Verification of the Heat Transfer Effect on the Highly Pressurized Gas Spring (고압 밀폐 가스 스프링에서의 열전달 효과 수치해석 및 실험적 검증)

  • Han, Insik;Choi, Kyojun;Kim, Jaeyong;Lee, Yoonbok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.87-97
    • /
    • 2013
  • Recently the use of gas spring in the combat and commercial vehicle's suspension is increasing. Because of its nonlinear characteristics, the gas spring can support wide range of dynamic loads and gives good ride quality. In design of gas spring, isothermal and adiabatic processes are applied generally, but those processes could not produce heat transfer effect in the simulation. So in this study, heat transfer differential equation and BWR/Ideal state equation are used to calculate the pressure of gas spring which is changing with time. The numerical analysis showed that the pressure of gas spring forms a hysteresis loop in the both of the state equations. But the peak pressure value of BWR equation over 0.1Hz frequency are higher than that of adiabatic process. And the test results showed that the differences between test results and ideal gas equation are smaller than those of BWR equation, so the ideal equation is more accurate than BWR equation in this case.