• Title/Summary/Keyword: 스펙트럼 마스크

Search Result 49, Processing Time 0.02 seconds

Nonlinear Distortion Analysis of 2.4GHz Power Amplifier for IEEE 802.11g OFDM Wireless LAN (IEEE 802.11g OFDM 무선랜용 2.4GHz 전력증폭기의 비선형 왜곡분석)

  • Oh Chung Gyun;Choi Jae Hong;Koo Kyung Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.3 s.333
    • /
    • pp.39-44
    • /
    • 2005
  • The OFDM modulation and transmission block have been modeled in order to analyse the relationship between the 2.4GHz power amplifier distortion and output ACPR for the IEEE 802.11g wireless LAN. The nonlinear characteristic of the power amplifier has been modeled as AM-to-AM and AM-to-PM using the behavioral model, and the output spectrum is analysed with the phase distortion variation. Also, amplifier back-off value from P1dB to satisfy the required IEEE 802.11g standard spectrum mask s been simulated with modeled phase distortion, and the simulation data have been compared to the measured result by using the pre-distortion technique.

Design of Dual-Band WLAN Transmitter with Frequency Doubler (주파수 체배기를 이용한 이중대역 무선 송신부 설계)

  • Roh, Hee-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.116-126
    • /
    • 2008
  • This paper describes the Dual-band WLAN transmitter with 2.4[GHz], 5[GHz]. Dual-band WLAN transmitter was designed at 2.4[GHz] and 5[GHz]. The Dual-band WLAN transmitter has a amplifier which operate at 2.4[GHz] and 5[GHz] frequency and two VCO(Voltage Controlled Oscillator) or VCO has a wide scope of frequency. these problem cause a size and a power consumption, The Dual-band WLAN transmitter module was proposed to solve these. the transmitter was designed to get output signals of IEEE 802.11a's 5.8[GHz] band signal using frequency multiplication way or to act a amplifier about the 2.4[GHz] band signal of IEEE 802.11b/g, according to inputed frequency and bias voltage that a eve using single transmission block. The output spectrum get the improved specification of ACPR of 4[dB], 6[dB], 16[dB] at +11[MHz], +20[MHz], +30[MHz] offset of center frequency compared to no linearization, was satisfied to transmit spectrum mask of IEEE 802.11a wireless Lan.

Simulation Study of VHF band π/4-DQPSK Maritime Digital Communication Modem According to ITU-R M.1842-1 Annex1 (ITU-R M.1842-1 Annex1 π/4-DQPSK VHF 대역 해상 디지털 통신모뎀의 시뮬레이션 연구)

  • Kwak, Jae-Min
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.693-699
    • /
    • 2013
  • In this paper, ${\pi}/4$-DQPSK modem according to ITU-R M.1842-1 recommendation Annex1 is investigated and simulated. At first, standardization and technical trend of VHF maritime mobile communication are introduced. The ${\pi}/4$-DQPSK modem defined in the Annex1 should support 28.8Kbps bit transmission rate within 25KHz frequency bandwidth. We describe the system model and simulation process of ${\pi}/4$-DQPSK modem transmitter and receiver design with RRC(Root Raised Cosine) transmitter and receiver filter. Then we suggest various graphical simulation results(time domain signals, constellation, power spectral density according to roll-off factor, eye diagram), and show simulated BER performance of the modem. From the simulation results, it is shown that roll-off factor of RRC filter affects to BER performance according to SNR and the designed simulation model meets the spectrum mask requirement suggested in ITU-R M.1842-1 recommendation.

RF Transceiver Implementation to Evaluate the Requirements of 3G W-CDMA User Equipment (3G W-CDMA UE 요구사항 평가를 위한 RF 트랜시버 구현)

  • Il-Kyoo Lee;Seung-Hyeub Oh
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.148-156
    • /
    • 2003
  • This paper describes the RF performance issues of UE for W-CDMA system based on 3 GPP specifications. The parameters of transmitter and receiver are derived from the viewpoint of RF performance. In order for UE to achieve high performance, the transceiver performance requirements such as ACLR, EVM, Peak Code Domain Error, spectrum emission mask, frequency error stability and TX power control dynamic range for transmitter and reference sensitivity level, blocking characteristics, noise figure, ACS, AGC dynamic range for receiver are considered. On the basis of the required parameters, the UE RF transceiver is implemented and then the evaluation of RF performance is accomplished through practical test scenarios.

Design Parameters of a RF Transceiver for Sensor Nodes (센서노드용 RF 송수신기의 설계 파라미터)

  • Kang, Sang-Gee;Choi, Heung-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.854-859
    • /
    • 2009
  • Many pilot projects are developed using USN(Ubiquitous Sensor network). Recently USN has more attention to be used for the applications of circumstance monitoring. In order to acquire information from sensor nodes, sensor nodes need a RF transceiver. In this paper we describe the design of a RF transceiver, based on IEEE 802.15.4, for sensor nodes operating in 2.4GHz frequency band. The architecture to be implemented and the electrical performance specifications satisfied IEEE 802.15.4 are presented. The noise figure of a receiver, selectivity, phase noise of a frequency synthesizer, transmitter's linearity and spectrum mask are derived as a design parameters from the specifications of IEEE 802.15.4.

Design and Implementation of HPA for TVWS (TVWS용 전력증폭기 설계 및 구현)

  • Song, Ji-Hun;Kim, Jung-Hwan;Seol, Gwang-cheol;Yu, Ho Sang;Kang, Sanggee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.693-695
    • /
    • 2015
  • The design and implementation of a broadband and linear HPA for TVWS are presented in this paper. The spectrum mask and transmitted power of HPAs for TVWS must be controlled and meet the regulations to minimize interference effects on the present broadcasting systems. The implemented HPA has the operating frequency of 470 ~ 698MHz with the maximum 48.63dB and minimum 43.45dB gain, input reflection coefficient of below -21.32dB, output reflection coefficient of below -4.29dB and the linearity of -45.24dBc at 28.79dBm output power.

  • PDF

Design and Implementation of a Polar Transmitter (폴라송신기의 설계 및 구현)

  • Kang, Sanggee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.55-59
    • /
    • 2014
  • Multi-band and multi-mode transmitters are needed for SDR and CR. Recently many types of polar transmitters have been studied in order to implement a multi-band and multi-mode transmitter. Polar transmitters have many advantages, such as a simple structure, high efficiency and etc. In this paper we consider the number of D/A bit and the effects of a delay mismatch as design parameters for implementing polar transmitters. From the simulation we know that a 10 bit D/A is sufficient and a delay mismatch must be maintained small than 1/64 chip for satisfying the spectrum mask characteristics. We implement a polar transmitter based on the design parameters and the measured output signal meet the spectrum mask of 800MHz CDMA.

Implementation of a RF Transceiver for Sensor Nodes (센서노드용 RF송수신기의 구현)

  • Kang, Sang-Gee;Choi, Heung-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1051-1057
    • /
    • 2009
  • USN(Ubiquitous Sensor Network) is used to provide many services such as bridge monitoring, cultural properties monitoring, river monitoring, protection of an old and feeble person, management and control of a city and circumstance monitoring, etc. A RF transceiver is needed for implementing USN. In this paper the implementation and the design of a RF transceiver for sensor nodes operating in 2.4GHz frequency band are presented. The design procedure of AGC, a receiver and a transmitter is described. And the performance of the implemented RF transceiver is also tested. The test results of receiver sensitivity, receiver dynamic range, frequency stability, phase noise, output power of transmitter, flatness and spectrum mask are presented.

A Broadband and High Linearity HPA for TVWS (TVWS용 광대역 고선형 전력증폭기)

  • Kang, Sanggee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.613-615
    • /
    • 2014
  • The design and implementation of a broadband and linear HPA(High Power Amplifier) for TVWS are presented in this paper. The spectrum mask and transmitted power of HPA for TVWS must be controlled and meet the regulations to minimize interference effects on present broadcasting systems. The implemented HPA has the operating frequency of 460 ~ 698MHz with $24.7{\pm}1dB$ gain, input reflection coefficient of below -25dB, output reflection coefficient of below -7.28dB and the linearity of -57.7dBc at 22.2dBm output power.

The Design of the Class E Swiching Frequency Multiplier (스위칭 모드 E급 주파수 체배기 설계)

  • Roh, Hee-Jung;Seo, Choon-Weon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.90-99
    • /
    • 2009
  • In this paper, we proposed the new class-E frequency multiplier design that include the highest efficient characteristics. The proposed frequency multiplier is designed for 5.8[GHz] output using the frequency multiplier about 2.9[GHz] input signal. And studying in this paper is for the design and the implementation of the class E frequency multiplier. For the result, the maximum highest efficient characteristics 32[%] which is with output power 24.5[dBm] and 8.5[dB], is shown with frequency multiplier for the 2.9/5.8[GHz] class E. And we applied the linear method to the implemented class E frequency multiplier. As a result, the output spectrum for the linear is upgrade to 12[dB], 12[dB], 13[dB] of the ACPR characteristics on the +11[MHz], +20[MHz], +30[MHz] offset frequency in the center frequency. The result is satisfied with the 3.83[%] of the lineared EVM for the 64-QAM modulated method with the 54[Mbps] transmission velocity. In this paper, we show that the good compensation result of the linearity and the efficiency through the digital pre-linear method of the distortion with the frequency multiplier. Therefore, we suggested the frequency multiplier method are applying to WLAN, cellular, PCS, WCDMA, and etc.