• Title/Summary/Keyword: 스팸탐지 기법

Search Result 21, Processing Time 0.029 seconds

Analysis and Detection Mechanism of Botnet on 6LoWPAN (6LoWPAN 상에서의 Botnet 분석 및 탐지 메커니즘)

  • Cho, Eung Jun;Hong, Choong Seon
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.1497-1499
    • /
    • 2009
  • 최근 들어 스팸 메일, 키 로깅, DDoS와 같은 공격에 Botnet이 사용되고 있다. Botnet은 크래커에 의해 명령, 제어되는 Bot에 감염된 클라이언트로 이루어진 네트워크이다. 지금까지 유선망의 Botnet을 탐지하기 위한 많은 기법이 제안되었지만, 현재 많은 개발이 이루어지고 있는 6LoWPAN과 같은 무선 센서 네트워크상의 Botnet에 관한 연구와 그 대처방안은 전무한 상태이다. 본 논문에서는 6LoWPAN 환경에서 Botnet이 얼마나 위험할 수 있는지 살펴보고 이를 탐지하기 위한 메커니즘을 제안하고자 한다.

Unsupervised Scheme for Reverse Social Engineering Detection in Online Social Networks (온라인 소셜 네트워크에서 역 사회공학 탐지를 위한 비지도학습 기법)

  • Oh, Hayoung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.3
    • /
    • pp.129-134
    • /
    • 2015
  • Since automatic social engineering based spam attacks induce for users to click or receive the short message service (SMS), e-mail, site address and make a relationship with an unknown friend, it is very easy for them to active in online social networks. The previous spam detection schemes only apply manual filtering of the system managers or labeling classifications regardless of the features of social networks. In this paper, we propose the spam detection metric after reflecting on a couple of features of social networks followed by analysis of real social network data set, Twitter spam. In addition, we provide the online social networks based unsupervised scheme for automated social engineering spam with self organizing map (SOM). Through the performance evaluation, we show the detection accuracy up to 90% and the possibility of real time training for the spam detection without the manager.

Analysis on Static Characteristics for Greylist-based SPIT Level Decision of VoIP SPAM Calls (VoIP 스팸 Call의 Grey List 기반 SPIT 레벨 결정을 위한 정적 속성 분석 연구*)

  • Chang, Eun-Shil;Kim, Hyoug-Jong;Kang, Seung-Seok;Cho, Young-Duk;Kim, Myuhng-Joo
    • Convergence Security Journal
    • /
    • v.7 no.3
    • /
    • pp.109-120
    • /
    • 2007
  • VoIP service provides various functions that PSTN phone service hasn't been able to provide. Since it also has superiority in service charge, the number of user is increasing these days. When we think of the other side in cost aspect, the spam caller can also send his/her commercial message over phone line using more economic way. This paper presents the characteristics that should be considered to detect the spam call using greylisting method. We have explored static and dynamic characteristics in VoIP calls, and analyzed the relation among them. Especially, we have surveyed the authentication and charging method of Korean VoIP service provider. We have analyzed each charging method using our spam call simulation result, and derived the charging method that can be favored by spam caller. The contribution of the work is in analysis result of static aspect for SPIT Level calculation in greylisting method.

  • PDF

Splog Detection Using Post Structure Similarity and Daily Posting Count (포스트의 구조 유사성과 일일 발행수를 이용한 스플로그 탐지)

  • Beak, Jee-Hyun;Cho, Jung-Sik;Kim, Sung-Kwon
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.2
    • /
    • pp.137-147
    • /
    • 2010
  • A blog is a website, usually maintained by an individual, with regular entries of commentary, descriptions of events, or other material such as graphics or video. Entries are commonly displayed in reverse chronological order. Blog search engines, like web search engines, seek information for searchers on blogs. Blog search engines sometimes output unsatisfactory results, mainly due to spam blogs or splogs. Splogs are blogs hosting spam posts, plagiarized or auto-generated contents for the sole purpose of hosting advertizements or raising the search rankings of target sites. This thesis focuses on splog detection. This thesis proposes a new splog detection method, which is based on blog post structure similarity and posting count per day. Experiments based on methods proposed a day show excellent result on splog detection tasks with over 90% accuracy.

소셜 데이터에서 재난 사건 추출을 위한 사용자 행동 및 시간 분석을 반영한 토픽 모델

  • ;Lee, Gyeong-Sun
    • Information and Communications Magazine
    • /
    • v.34 no.6
    • /
    • pp.43-50
    • /
    • 2017
  • 본고에서는 소셜 빅데이터에서 공공안전에 위협되고 사회적으로 이슈가 되는 재난사건을 추출하기 위한 방법으로 소셜 네트워크상에서 사용자 행동 분석과 시간분석을 반영한 토픽 모델링 기법을 알아본다. 소셜 사용자의 글 수, 리트윗 반응, 활동주기, 팔로워 수, 팔로잉 수 등 사용자의 행동 분석을 통하여 활동적이고 신뢰성 있는 사용자를 분류함으로써 트윗에서 스팸성과 광고성을 제외하고 이슈에 대해 신뢰성 높은 사용자가 쓴 트윗을 중요하게 반영한다. 또한, 트위터 데이터에서 새로운 이슈가 발생한 것을 탐지하기 위해 시간별 핵심어휘 빈도의 분포 변화를 측정하고, 이슈 트윗에 대해 감성 표현 분석을 통해 핵심이슈에 대해 사건 어휘를 추출한다. 소셜 빅데이터의 특성상 같은 날짜에 여러 이슈에 대한 트윗이 많이 생성될 수 있기 때문에, 트윗들을 토픽별로 그룹핑하는 것이 필요하므로, 최근 많이 사용되고 있는 LDA 토픽모델링 기법에 시간 특성과 사용자 특성을 분석한 시간상에서의 중요한 사건 어휘를 반영하고, 해당이슈에 대한 신뢰성 있는 사용자가 쓴 트윗을 중요시 반영하도록 토픽모델링 기법을 개선한 소셜 사건 탐지 방법에 대해 알아본다.

Exploratory study on the Spam Detection of the Online Social Network based on Graph Properties (그래프 속성을 이용한 온라인 소셜 네트워크 스팸 탐지 동향 분석)

  • Jeong, Sihyun;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.567-575
    • /
    • 2020
  • As online social networks are used as a critical medium for modern people's information sharing and relationship, their users are increasing rapidly every year. This not only increases usage but also surpasses the existing media in terms of information credibility. Therefore, emerging marketing strategies are deliberately attacking social networks. As a result, public opinion, which should be formed naturally, is artificially formed by online attacks, and many people trust it. Therefore, many studies have been conducted to detect agents attacking online social networks. In this paper, we analyze the trends of researches attempting to detect such online social network attackers, focusing on researches using social network graph characteristics. While the existing content-based techniques may represent classification errors due to privacy infringement and changes in attack strategies, the graph-based method proposes a more robust detection method using attacker patterns.

안드로이드 모바일 악성앱 동적분석 회피기술 동향

  • Kim, Mijoo;Shin, Young Sang;Lee, Tae Jin;Youm, Heung Youl
    • Review of KIISC
    • /
    • v.25 no.6
    • /
    • pp.5-12
    • /
    • 2015
  • 스마트폰 사용이 대중화됨에 따라 스마트폰 사용인구 증가와 함께 우리의 일상생활과 밀접한 관계를 가지며 영향력을 넓혀가고 있는 가운데, 악성앱을 이용해 개인정보 유출, 불법 과금 유발, 스팸 발송 등 스마트폰 사용자에 피해를 입히며 사회적인 문제를 유발하는 보안 위협의 출현 또한 지속적으로 증가하고 있다. 이러한 문제를 해결하기 위해 전 세계 보안업체, 연구소, 학계 등에서는 스마트폰 악성앱을 탐지하고 대응하기 위한 기술을 연구개발하고, 앱 마켓에서는 악성앱을 탐지하기 위한 분석 시스템을 도입하는 등 다양한 활동이 진행되고 있다. 하지만 악성앱 또한 기존의 탐지 및 대응 기술을 우회하는 등 생존율을 높이기 위한 방향으로 점차 지능화 정교화되는 양상을 보이고 있다. 최근 이러한 특징은 앱 마켓 등에서 도입하고 있는 대량의 앱에 대한 자동화된 런타임 분석을 수행하는 동적분석 시스템/서비스를 대상으로 많이 발생되고 있는데, 동적분석의 환경적, 시간적 제약 등을 이용하여 분석기술을 회피하는 기법을 주로 사용하고 있다. 이와 관련하여 본 논문에서는 기존의 동적분석 기술을 우회하는 악성앱 분석회피 행위 유형을 분류하고, 이와 관련된 연구 동향에 대한 정보를 제공하고자 한다.

An Approach to Detect Spam E-mail with Abnormal Character Composition (비정상 문자 조합으로 구성된 스팸 메일의 탐지 방법)

  • Lee, Ho-Sub;Cho, Jae-Ik;Jung, Man-Hyun;Moon, Jong-Sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.6A
    • /
    • pp.129-137
    • /
    • 2008
  • As the use of the internet increases, the distribution of spam mail has also vastly increased. The email's main use was for the exchange of information, however, currently it is being more frequently used for advertisement and malware distribution. This is a serious problem because it consumes a large amount of the limited internet resources. Furthermore, an extensive amount of computer, network and human resources are consumed to prevent it. As a result much research is being done to prevent and filter spam. Currently, research is being done on readable sentences which do not use proper grammar. This type of spam can not be classified by previous vocabulary analysis or document classification methods. This paper proposes a method to filter spam by using the subject of the mail and N-GRAM for indexing and Bayesian, SVM algorithms for classification.

A Classification Model for Attack Mail Detection based on the Authorship Analysis (작성자 분석 기반의 공격 메일 탐지를 위한 분류 모델)

  • Hong, Sung-Sam;Shin, Gun-Yoon;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.35-46
    • /
    • 2017
  • Recently, attackers using malicious code in cyber security have been increased by attaching malicious code to a mail and inducing the user to execute it. Especially, it is dangerous because it is easy to execute by attaching a document type file. The author analysis is a research area that is being studied in NLP (Neutral Language Process) and text mining, and it studies methods of analyzing authors by analyzing text sentences, texts, and documents in a specific language. In case of attack mail, it is created by the attacker. Therefore, by analyzing the contents of the mail and the attached document file and identifying the corresponding author, it is possible to discover more distinctive features from the normal mail and improve the detection accuracy. In this pager, we proposed IADA2(Intelligent Attack mail Detection based on Authorship Analysis) model for attack mail detection. The feature vector that can classify and detect attack mail from the features used in the existing machine learning based spam detection model and the features used in the author analysis of the document and the IADA2 detection model. We have improved the detection models of attack mails by simply detecting term features and extracted features that reflect the sequence characteristics of words by applying n-grams. Result of experiment show that the proposed method improves performance according to feature combinations, feature selection techniques, and appropriate models.

Cloud based Android Mobile Malware Detection Using Stage by Stage Analysis (단계적 분석 기법을 이용한 클라우드 기반 모바일 악성코드 탐지)

  • Lee, Jina;Min, Jae-Won;Jung, Sung-Min;Chung, Tai-Myoung
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.1076-1079
    • /
    • 2012
  • 스마트폰의 사용이 생활에 필수적인 요소가 되었다. 스마트폰 특징의 가장 핵심적인 부분이 다양한 콘텐츠를 사용자의 취향에 맞게 선택 할 수 있다는 점이기에 스마트폰의 콘텐츠 시장 또한 빠르게 커지고 있다. 오픈 마켓인 안드로이드의 특성 상 누구나 어플리케이션을 만들어 원하는 곳에 배포할 수 있고 어플리케이션을 다운받을 수 있는 소스도 한정되어 있지 않기 때문에 스마트폰 보안을 위협하는 악의적인 어플리케이션에 노출되기 쉽다. 개인적인 정보가 저장되어 있는 핸드폰의 특징 상 악성코드에 노출 될 경우 전화번호부 유출로 인한 인한 스팸이나 피싱에서 크게는 금융정보 유출까지, 입을 수 있는 피해가 크다. 이를 방지하기 위해 클라우드 컴퓨팅을 이용해 단계적으로 악의적인 어플리케이션을 걸러 내고 클라우드 서버에 어플리케이션 실행 환경을 제공함으로써 사용자의 기기를 안전하게 보호 할 수 있는 시스템을 제안한다.