• Title/Summary/Keyword: 스파캡

Search Result 6, Processing Time 0.02 seconds

A Lightweight Design of the Spar cap of Wind Turbine Blades with Carbon Fiber Composite and Ply Reduction Ratio (탄소섬유 복합재 및 두께 축소율을 이용한 풍력 블레이드 스파캡 경량화 설계)

  • Kim, Do-Won;Jeong, Gyu;Lim, Jae Hyuk;Lim, Jun-Woo;Yu, Byeong-Min;Lee, Kil-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.66-75
    • /
    • 2018
  • In this paper, a lightweight design of the spar cap of 2MW wind turbine blade was carried out using the ply reduction ratio (PRR) and CFRP with a trade-off study. The spar cap is one of the most critical factor in determining the mechanical performance of the blade. Tsai-Wu and Puck fracture theory were used to determine the fracture. As a result, the CFRP composite material could be lighter in terms of weight by about 30% than GFRP composite material under the same conditions. Based on the analytical results, we derive the optimal value of the laminate thickness of the composite material and present the structural performance improvement and the lightweight design result.

The Prediction of Failure Load for an Unsymmetrically Stiffened Circular Composite Spar (비대칭으로 보강된 복합재 원형 스파의 파손하중 예측)

  • Kim, Sung Joon;Lee, Donggeon;Park, Sang Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.7
    • /
    • pp.505-511
    • /
    • 2020
  • The circular composite tubes have been used as a main spar of HALE-UAV(High Altitude Long Endurance-Unmanned Air Vehicle). In this paper, an analytical model is presented for the prediction of the failure load of unsymmetrically stiffened circular spar using a modified Brazier approach. This model was used to predict the moment carrying capacity of the unsymmetrically stiffened circular spar. From the results, we can know that a stiffened cap placed in the top sector of a spar increased the bending capabilities. Four point bending tests were conducted to estimate the effect of the cap on the failure load and compared with the proposed model. And numerical simulations were performed to analyze the behavior of stiffened circular spar. Comparisons of the results from the proposed model with those from experiments and numerical modes show good correlation.

Thickness Optimization for Spar Cap of Composite Tidal Current Turbine Blade using SQP Method (SQP법을 사용한 복합재 조류력 발전용 블레이드의 스파 캡에 대한 두께 최적화)

  • Cha, Myung-Chan;Kim, Sang-Woo;Jeong, Min-Soo;Lee, In;Yoo, Seung-Jae;Park, Cheon-Jin
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.207-212
    • /
    • 2013
  • In this study, the thickness optimization for uni-directional (UD) glass fiber reinforced polymer (GFRP) laminates of the spar cap of composite tidal blades was performed under the tip deflection constrains. The spar cap was composed of GFRP composites and carbon fiber reinforced polymer (CFRP) composites. The stress distributions in the blade as well as its material costs for the optimized results were additionally investigated. The optimized thickness was obtained by interacting a sequential quadratic programming (SQP) algorithm and an ABAQUS software to calculate an objective function. It was confirmed that the thickness of UD GFRP increased with a decrease of the restrained tip deflection when a thickness of UD CFRP laminates was constrained to 9 mm. The weight of the optimized spar-cap increased up to 96.2% while the maximum longitudinal tensile stress decreased up to 24.6%. The thickness of UD GFRP laminates increased with a decrease of the thickness of UD CFRP laminates when the tip deflection was constrained to 126.83 mm. The weight increased up to 40.1%, but the material cost decreased up to 16.97%. Finally, the relationships among the weight, internal tensile stress, and material costs were presented based on the optimized thicknesses of the spar cap.

Evaluation of Fracture Toughness Characteristics of Pultruded CFRP Spar-Cap Materials with Non-woven Glass Fabric for Wind Blade (유리섬유 부직포가 삽입된 풍력 블레이드 인발 성형 스파캡 소재의 파괴인성 특성 평가)

  • Young Cheol Kim;Geunsu Joo;Jisang Park;Woo-Kyoung Lee;Min-Gyu Kang;Ji Hoon Kim
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.83-90
    • /
    • 2023
  • The purpose of this study is to evaluate the inter-laminar fracture toughness characteristics of CFRP pultrusion spar cap materials reinforced with non-woven glass fabric. Test specimens were fabricated by the infusion technique. A non-woven glass fabric and artificial defects were embedded on the middle surface between two pultruded CFRP panels. Double cantilever beam (DCB) and End Notched Flexure (ENF) tests were performed according to ASTM standards. Fracture toughness and crack propagation characteristics were evaluated with load-displacement curves and delamination resistance curves (R-Curve). The fracture toughness results were calculated by compliance calibration (CC) method. The initiation and propagation values of Mode-I critical strain energy release rate value GIc were 1.357 kJ/m2 and 1.397 kJ/m2, respectively, and Mode-II critical strain energy release rate values GIIc were 4.053 kJ/m2 for non-precracked test and 4.547 kJ/m2 for precracked test. It was found that the fracture toughness properties of the CFRP pultrusion spar-cap are influenced by the interface between the layers of CFRP and glass fiber non-woven.

A study on the CIGS thin film solar cells by Ga content (Ga 함유량에 따른 $Cu(In_{1-x}Ga_{x})Se_2$ 박막 태양전지에 관한 연구)

  • Song, Jin-Seob;Yoon, Jae-Ho;Ahn, Se-Jin;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.339-342
    • /
    • 2007
  • $Cu(In_{1-x}Ga_{x})Se_2$(CIGS)는 매우 큰 광흡수계수를 가지고 있으므로 박막형 태양전지의 광흡수층 재료로서 많은 연구가 진행되고 있다. 박막이 태양전지의 광흡수층으로 이용되기 위해서는 큰 결정크기와 평탄한 표면, 적당한 전기적 특성을 가져야 한다. 이러한 특성들은 CIGS 박막의 조성에 큰 영향을 받고 있는 것으로 보고되고 있다. 본 연구에서는 동시증발법을 이용하여 Cu/(In+Ga) 비를 0.9로 고정한 후 Ga 조성(Ga/(In+Ga)의 비 : 0.32, 0.49, 0.69, 0.8, 1)을 변화시켜 Wide band gap CIGS 박막태양전지를 만들었다. 기판은 soda line glass를 사용하였고 뒷면 전극으로는 Mo를 스퍼터링법으로 증착하였다. 또한 버퍼층으로는 기존에 쓰이고 있는 CdS를 CBD(Chemical Bath Deposition)법으로 층착시켰으며, 윈도우층으로는 i-ZnO/n-ZnO를 스파터링 법으로 층착하였다. 그리고 앞면전극으로는 Al을 E-beam 으로 증착하였다. 분석은 XRD, SEM, QE로 분석하였다. 위 실험에서 얻은 결과로는 Ga/(In+Ga)비가 증가할수록 Cu(In,Ga)Se2 박막은 회절 peak들이 큰 회절각으로 이동하였고, 이것은 Ga 원자와 In 원자의 원자반경의 차이에서 기인된 것으로 사료된다. 또한 Ga 조성이 증가할수록 단파장 쪽으로 이동하는 것을 볼 수 있으며, Voc가 증가하다가 에너지 밴드캡이 1.62 eV 이상에서는 Voc가 감소하는 것을 볼 수 있는데 이것은 Ga 조성이 증가할수록 에너지 밴드캡이 커지면서 defect level 이 존재하기 때문인 것으로 사료된다. Ga/(In+Ga)비가 1일 때의 변환효율은 8.5 %이고, Voc : 0.74 (V), Jsc : 17.2 ($mA/cm^{2}$), F.F : 66.6(%) 이다.

  • PDF