DOI QR코드

DOI QR Code

Evaluation of Fracture Toughness Characteristics of Pultruded CFRP Spar-Cap Materials with Non-woven Glass Fabric for Wind Blade

유리섬유 부직포가 삽입된 풍력 블레이드 인발 성형 스파캡 소재의 파괴인성 특성 평가

  • Young Cheol Kim ;
  • Geunsu Joo ;
  • Jisang Park ;
  • Woo-Kyoung Lee ;
  • Min-Gyu Kang ;
  • Ji Hoon Kim
  • 김영철 (한국재료연구원, 복합재료구조시스템연구실) ;
  • 주근수 (한국재료연구원, 복합재료구조시스템연구실) ;
  • 박지상 (한국재료연구원, 복합재료구조시스템연구실) ;
  • 이우경 (한국재료연구원, 복합재료구조시스템연구실) ;
  • 강민규 (한국재료연구원, 복합재료구조시스템연구실) ;
  • 김지훈 (부산대학교, 기계공학부 정밀가공시스템 전공)
  • Received : 2023.06.07
  • Accepted : 2023.09.01
  • Published : 2023.09.30

Abstract

The purpose of this study is to evaluate the inter-laminar fracture toughness characteristics of CFRP pultrusion spar cap materials reinforced with non-woven glass fabric. Test specimens were fabricated by the infusion technique. A non-woven glass fabric and artificial defects were embedded on the middle surface between two pultruded CFRP panels. Double cantilever beam (DCB) and End Notched Flexure (ENF) tests were performed according to ASTM standards. Fracture toughness and crack propagation characteristics were evaluated with load-displacement curves and delamination resistance curves (R-Curve). The fracture toughness results were calculated by compliance calibration (CC) method. The initiation and propagation values of Mode-I critical strain energy release rate value GIc were 1.357 kJ/m2 and 1.397 kJ/m2, respectively, and Mode-II critical strain energy release rate values GIIc were 4.053 kJ/m2 for non-precracked test and 4.547 kJ/m2 for precracked test. It was found that the fracture toughness properties of the CFRP pultrusion spar-cap are influenced by the interface between the layers of CFRP and glass fiber non-woven.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 재원으로 한국에너기술평가원의 지원을 받아 수행한 신재생에너지핵심기술개발사업(No. 20213030020120)의 연구 결과입니다.

References

  1. Leung, D. Y., and Yang, Y, M. H, 2012, "Wind energy development and its environmental impact: A review," Renewable and sustainable energy reviews, Vol. 16, Issue 1, pp. 1031~1039
  2. Short, W., Packey, D. J., and Holt, T., 1995, "A manual for the economic evaluation of energy efficiency and renewable energy technologies(No. NREL/TP-462-5173)," Renewable Energy, National Renewable Energy Lab.(NREL), Golden, CO (United States).
  3. Bruck, M., Sandborn, P., and Goudarzi, N., 2018, "A Levelized Cost of Energy (LCOE) model for wind farms that include Power Purchase Agreements (PPAs)," Renewable Energy, Vol. 122, No. 2, pp. 131~139.
  4. Betz, A., 2014, "Introduction to the Theory of Flow Machines," Elsevier.
  5. Reddy, S. S. P., Suresh, R., MB, H., and Shivakumar, В. P., 2021, "Use of composite materials and hybrid composites in wind turbine blades," Materials Today: Proceedings, Vol. 46, Part 7, pp. 2827~2830
  6. HIPPAC., 2020, "HIGH PERFORMANCE PULTRUSION FOR ADVANCED COMPOSITES(HIPPAC)," available online: https://www.hippac.co.uk/news/2020/high-performance-pultrusion-for-advanced-composites-hippac accessed on date : August 2, 2023.
  7. Composites World., 2018, "Wind blade spar caps: Pultruded to perfection?," available online: https://www.compositesworld.com/articles/wind-blade-spar-caps-pultruded-to-perfection. accessed on date : January 24, 2023.
  8. Motamedi, D., Takaffoli, M., and S. Milani, A.. 2020. "Nonlinear XFEM Modeling of Mode II Delamination in PPS/Glass Unidirectional Composites with Uncertain Fracture Properties," Materials, Vol. 13, Issue 16, 3548.
  9. Li, M., 2000, Temperature and moisture effects on composite materials for wind turbine blades, Masters Thesis, Montana State University-Bozeman, College of Engineering.
  10. Kim, H., Jang, Y. and Kang, K., 2021. "Evaluation of Interlayer Fracture Toughness of Laminated Biaxial/Triaxial Hybrid Composite for Wind Turbine Blade," Journal of Wind Energy, Vol. 12, Issue 3, pp. 68~79.
  11. Yan, X., Guo, X., Gao, Y., Lin, Y., Zhang, N., and Zhao, Q., 2023, "Mode-II fracture toughness and crack propagation of pultruded carbon Fiber-Epoxy composites," Engineering Fracture Mechanics, Vol. 279, 109042.
  12. Zoltek hompage., 2018, "ZOLTEK Pultruded Profiles," available online: https://zoltek.com/products/px35/pultruded-profiles/ accessed on date : January 7, 2023.
  13. Kravchenko, O. G., Kravchenko, S. G., and Sun, C. T. 2017, "Thickness dependence of mode I interlaminar fracture toughness in a carbon fiber thermosetting composite", Composite Structures, Vol. 160, pp. 538~546.
  14. Farmand-Ashtiani, E., Cugnoni, J., and Botsis, J., 2015, "'Specimen thickness dependence of large scale fiber bridging in mode I interlaminar fracture of carbon epoxy composite", International Journal of Solids and Structures, Vol. 55, pp. 58~65.
  15. Agrawal, A., and Jar, P. Y. B., 2003, "Analysis of specimen thickness effect on interlaminar fracture toughness of fibre composites using finite element models", Composites science and technology, Vol. 63, No. 10, pp. 1393-1402.
  16. ASTM International, 2021, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, ASTM D5528.
  17. ASTM International, 2019, Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, ASTM D7905/D7905M.