• Title/Summary/Keyword: 스튜워트 플랫폼 운동장치

Search Result 3, Processing Time 0.019 seconds

Model-Based Control System Design and Sliding Mode Control of Stewart Platform Manipulator (운동방정식을 기저로 한 스튜워트 플랫폼 운동장치의 제어시스템 설계 및 슬라이딩 모드제어)

  • Lee, Chong-Won;Kim, Nag-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.903-911
    • /
    • 1999
  • A high speed tracking control system for 6-6 Stewart platform manipulator is designed for performing the model based joint-axis sliding mode control. Because of the complex dynamics and kinematics of the Stewart platform manipulator, two computer systems, consisting of a PC and a DSP, are adopted, so that real time tasks are run in synchronous and asynchronous modes. It is experimentally proven that the proposed control system makes the convenience in implementation of model based tracking control, so that it can achieve effective tracking control under relatively high speed and additional payload conditions.

A New Dynamic Analysis of 6-3 Stewart Platform Manipulator (6-3 스튜워트 플랫폼 운동장치의 운동방정식 해석)

  • Kim, Nak-In;Lee, Chong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1820-1828
    • /
    • 2001
  • The dynamics of the 6-3 Stewart platform manipulator (SPM) is newly derived based on the kinematic relations particularly developed fur the SPM. The essence of the analysis is to deal with three subsystems of the SPM, each consisting of the command and feedback line links associated with two joined neighboring actuators. The dynamics of the command and feedback line links are first formulated using Lagrange and Newton-Euler method and then combined to derive the dynamic equations of motion fur the SPM. The derived nonlinear equations of motion are so computationally effective that it can be easily applied to real-time high-speed tracking control of 6-3 SPM.

A New Kinematic Analysis of 6-3 Stewart Platform Manipulator (6-3 스튜워트 플랫폼 운동장치의 새로운 기구학 해석방법)

  • Kim, Nak-In;Lee, Chong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1206-1212
    • /
    • 2001
  • The kinematic analysis of Stewart platform manipulator(SPM) is carried out in order to reduce the calculation time for its forward kinematic solution when the iterative numerical method is employed. The kinematic equations for three substructures of the 6-3 SPM are newly derived by introducing Denavit-Hartenberg link parameters and using kinematic constraints associated with the SPM and substructure kinematics. It is shown that the forward kinematics can be easily solved from three nonlinear equations with three unknown variables only, leading to a great reduction in calculation time.