• Title/Summary/Keyword: 스터드 용접

Search Result 35, Processing Time 0.027 seconds

Mechanical Properties of High Stiffness Shear Connector (고강성 스터드볼트의 역학적 특성에 관한 연구)

  • Eom, Chul-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.491-496
    • /
    • 2015
  • The headed studs used extensively for steel-composite construction are specified as SS400 in the current Korean Standard specification considering the welding condition. And the corresponding equation for the shear force calculation is limited for the use of compression strength of concrete below $300kgf/cm^2$. However, it is expected that the high strengthening and precasting of both steel and concrete due to the necessity of shear connector or other connecting material for the combination of steel and concrete. Therefore, the experimental results obtained during the development process of high strength stud for the connection of high strength concrete and the steel member are reported in this paper. Also the effectiveness of newly developed shear connector using pipe(pipe stud) to increase the stiffness of a stud is verified by comparing both the stiffness and the strength with common stud bolt through the welding ability, mechanical characteristics and experimental investigation.

An Experimental Study of Demountable Bolted Shear Connectors for the Easy Dismantling and Reconstruction of Concrete Slabs of Steel-Concrete Composite Bridges (강합성 교량의 콘크리트 바닥판 해체 및 재시공이 용이한 분리식 볼트접합 전단연결재에 관한 실험적 연구)

  • Jung, Dae Sung;Park, Se-Hyun;Kim, Tae Hyeong;Kim, Chul Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.751-762
    • /
    • 2022
  • Welded head studs are mainly used as shear connectors to bond steel girders and concrete slabs in steel-concrete composite bridges. For welded shear connectors, environmental problems include noise and scattering dust which are generated during the removal of damaged or aged slabs. Therefore, it is necessary to develop demountable shear connectors that can easily replace aged concrete slabs for efficient maintenance and thus for better management of environmental problems and life cycle costs. The buried nut method is commonly studied in relation to bolted shear connectors, but this method is not used in civil structures such as bridges due to low rigidity, low shear resistance, and increased initial slip. In this study, in order to mitigate these problems, a demountable bolted shear connector is proposed in which the buried nut is integrated into the stud column and has a tapered shape at the bottom of an enlarged column shank. To verify the performance of the proposed demountable stud bolts in terms of static shear strength and slip displacement, a horizontal shear test was conducted, with the performance outcomes compared to those of conventional welded studs. It was confirmed that the proposed demountable bolted shear connector is capable of excellent shear performance and that it satisfies the slip displacement and ductility design criteria, meaning that it is feasible as a replacement for existing welding studs.

An Experimental Study on Structural Performance of HRC Composite Beam according to types of Connection Plate with Stud Bolts (HRC 복합보의 연결플레이트 보강법에 따른 구조성능실험)

  • Lee, Soo-Kueon;Yang, Jae-Guen;Song, Chang-Seok;Jang, Eun-Young;Moon, Jun-Chul
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.377-384
    • /
    • 2011
  • Recently, for the purpose of reducing work terms and improving performance for construction work, various methods in structure field were developed. This included the HRC system which is applicable to a typical structure (e.g., parking and office building). The HRC system introduced the Gerber Joint to raise structural efficiency and used connection plate to bolt HRC composite beam to H beam in the construction field. In this research, the experimental tests for six specimens, which were in the same field conditions, were conducted with several parameters such as the length and height of the connection plate and the number of stub bolts. The test result was compared with those made by current design codes for the deflection and strains of the main bar. Within the given load, the integration of concrete in beam and connection plate, welded with stud bolts, was verified.

Fatigue Behavior of Large Stud Shear Connectors (대직경 스터드 전단연결재의 피로거동)

  • Shim, Chang Su;Lee, Pil Goo;Kim, Hyun Ho;Yoon, Tae Yang
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.621-628
    • /
    • 2003
  • Stud shear connectors are the most commonly used shear connectors: up to 22mm studs are usually used in steel-concrete composite structures. To expand the current design codes for stud connectors, large studs with a diameter of more than 25mm should be investigated. Through push-out tests on large stud shear connectors that transcend the limitation of current design codes, fatigue behavior was investigated and comparisons with design equations performed. The shear stiffness of the connectors in elastic range was evaluated through shear tests on 25mm, 27mm, and 30mm studs and compared with those from static tests. The fatigue behavior of large studs was discussed in terms of residual slip and load-slip curves. The initiation of fatigue cracks in the welding part could be detected through the history of displacement range. Test results showed that the design fatigue endurance of S-N curves in current design codes could be applied to large stud shear connector.

STUD Welding on High Hardness Armor Steel of KWV (차륜형장갑차 고경도장갑강에 대한 스터드 용접의 적용)

  • Cho, Hwan-Hwi;Shin, Yong-cheol;Yi, Hui-jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.567-573
    • /
    • 2016
  • GMAW and GTAW processes have been used for welding of equipment mounting pads during decades. For improving the mobility and survivability of KWV(Korean Wheeled Vehicle), various types of equipment are required and numbers of pads for welding were increased. In this research, for improving productivity of mounting pads welding process, new technology of stud welding was studied. In this study, mechanical properties of stud weldment were investigated to compare with those of GMAW weldment. Also, research of stud weldment durability was carried out and proved its fatigue strength under the condition of KWV's 32,000 km load profile.

Auto Welding System Development For The Improvement Of The Stud Bolt Welding System (Stud Bolt 용접 환경 개선을 위한 자동 용접 시스템 개발)

  • 하인철;송병석;송신우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.185-190
    • /
    • 2003
  • At the present, a stud bolt welding was achieved by the manual method. The manual method caused many problems of work evasion. In order to work out these problems, an automatic welding system is designed for a stud bolt welding system. The system is composed of articulated type welding robot, stud gun, stud feeder, stud controller and various jig.

  • PDF

Analysis of CD stud welding process and defects (CD 스터드 용접공정의 해석 및 결함 분석)

  • O, Hyeon-Seok;Yu, Jung-Don
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.55-57
    • /
    • 2005
  • In this study, modeling of the CD stud welding system was conducted considering mechanical and electrical components. The electrical components such as arc resistance, cable resistance, capacitance, internal resistance and cable inductance were found to affect the output waveform significantly. The calculated results showed food agreements with the experiment results within 20% error. The main defect of CD stud welding with 1010 steel stud and SS400 steel plate was the void trapped between stud and base metal. The effect of the spring force and stud tip size on void formation was investigated.

  • PDF

Static Behavior of Large Stud Shear Connectors (대직경 스터드 전단연결재의 정적거동)

  • Lee, Pil Goo;Shim, Chang Su;Yoon, Tae Yang
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.611-620
    • /
    • 2003
  • Shear studs with a diameter of 19mm or 22mm are typically used in steel-concrete composite bridge. For the simplification of details in steel bridges, the convenience of removing concrete slab, and the efficient distribution of shear pockets for precast decks, large studs can be an excellent alternative. Through push-out tests on large stud shear connectors that transcend the limitation of current design codes, static behavior was investigated and comparisons with design equations performed. The shear stiffness of the connectors in elastic range and trilinear load-slip curves were proposed after shear tests on 25mm, 27mm, and 30mm studs. The ultimate slip capacity and ultimate strength of large studs were also evaluated, with the test results revealing conservative values for the design shear strength in Eurocode-4. For 30mm stud shear connectors, the welding quality and bearing capacity of concrete slab should be improved.

Elasto-Plastic Behaviors of Composite Beam using Shear Connectors installed in Driving Pins (드라이빙핀전용 전단연결재를 이용한 합성보의 탄소성 거동)

  • Yang, Il-Seung;Oh, Young-Ho;Lee, Man-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.73-80
    • /
    • 2012
  • The adoption of a composite beam system is regarded as a simple but effective solution because it improves the overall stiffness, strength and stability of the structure by welding shear studs. However, welding shear studs poses problems including electric shock and weld defects. Mechanical methods have emerged as an alternative to metallurgical methods for connecting the H-beam and shear connector. Four specimens were tested in order to compare the structural behavior of the proposed composite beams with that of the classical composite beam given the condition of horizontal loading. With the original composite beam (FCB-SB specimen) using stud bolts, hysteresis loops are stable, but its strength decreased with the crashing of the concrete slab around the column. The suggested composite beams using shear connectors also yielded stable hysteresis loops. Consequently, use of the suggested composite beams instead of the original composite beam are recommended.

An Experimental Study on Joint Structures of Composite Truss Bridges (복합 트러스 교량의 연결구조에 대한 실험적 연구)

  • Shim, Chang Su;Park, Jae Sik;Kim, Kwang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.303-312
    • /
    • 2007
  • Steel box girder bridges are being commonly designed for medium-span bridges of span length. Composite truss bridges with steel diagonals instead of concrete webs can be an excellent design alternative, because it can reduce the dead weight of superstructures. One of the key issues in the design of composite truss bridges is the joint structureconnecting the diagonal steel members with the upper and lower concrete slabs. Because the connection has to carry concentrated combined loads and the design provisions for the joint are not clear, it is necessary to investigate the load transfer mechanism and the design methods for each limit state. There are various connection details according to the types of diagonal members. In this paper, the joint structure with group stud connectors welded on a gusset plate is used. Push-out tests for the group stud connectors of were performed. The test results showed that the current design codes on the ultimate strength ofthe stud connection can be used when the required minimum spacing of stud connectors is satisfied. Flexure-shear tests were conducted to verify the applicability of the design provisions for combined load effects to the strength of joint structures. To increase the pullout strength of the connection, bent studs were proposed and utilized for the edge studs in the group arrangement of the joint. The results showed that the details of the joint structure were enhanced. Thereafter, design guidelines were proposed.