• Title/Summary/Keyword: 스택 효과

Search Result 62, Processing Time 0.018 seconds

A Study on the Shaped-Beam Antenna with High Gain Characteristic (고이득 특성을 갖는 성형 빔 안테나에 대한 연구)

  • Eom, Soon-Young;Yun, Je-Hoon;Jeon, Soon-Ick;Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.62-75
    • /
    • 2007
  • This paper describes a shaped-beam antenna for increasing the antenna gain of a radiating element. The proposed antenna structure is composed of an exciting element and a multi-layered disk array structure(MDAS). The stack micro-strip patch elements were used as the exciter for effectively radiating the electromagnetic power to the MDAS over the broadband, and finite metallic disk array elements - which give the role of a director for shaping the antenna beam with the high gain - were finitely and periodically layered onto it. The efficient power coupling between the exciter and the MDAS should be carried out in such a way that the proposed antenna has a high gain characteristic. The design parameters of the exciter and the MDAS should be optimized together to meet the required specifications to meet the required specifications. In this study, a shaped-beam antenna with high gain was optimally designed under the operating conditions with a linear polarization and the frequency band of $9.6{\sim}10.4\;GHz$. Two methods constructed using thin dielectric film and dielectric foam materials respectively were also proposed in order to implement the MBAS of the antenna. In particular, through the computer simulation process, the electrical performance variations of the antenna with the MDAS realized by the thin dielectric film materials were shown according to the number of disk array elements in the stack layer. Two kinds of antenna breadboard with the MDAS realized with the thin dielectric film and dielectric foam materials were fabricated, but experimentation was conducted only on the antenna breadboard(Type 1) with the MDAS realized with the thin dielectric film materials according to the number of disk array elements in the stack layer in order to compare it with the electrical performance variations obtained during the simulation. The measured antenna gain performance was found to be in good agreement with the simulated one, and showed the periodicity of the antenna gain variations according to the stack layer number of the disk array elements. The electrical performance of the Type 1 antenna was measured at the center frequency of 10 GHz. As the disk away elements became the ten stacks, a maximum antenna gain of 15.65 dBi was obtained, and the measured return loss was not less than 11.4 dB within the operating band. Therefore, a 5 dB gain improvement of the Type 1 antenna can be obtained by the MDAS that is excited by the stack microstrip patch elements. As the disk array elements became the twelve stacks, the antenna gain of the Type 1 was measured to be 1.35 dB more than the antenna gain of the Type 2 by the outer dielectric ring effect, and the 3 dB beam widths measured from the two antenna breadboards were about $28^{\circ}$ and $36^{\circ}$ respectively.

A study on measures for the mitigation of fire damage in Korea super high-rise building through the improvement of domestic·foreign standards (국·내외 기준개선을 통한 국내 초고층 건축물의 화재피해경감 대책에 관한 연구)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.233-248
    • /
    • 2017
  • Uniform laws and regulations and reasonable design is necessary for the prevention of possible fire in super high-rise building. To this end, this study focused on super high-rise and massive building-related architectural review performance-based design (PBD) evaluation disaster impact assessment (DIA), and provided fire engineering measures for improving fire prevention on the basis of performance-based design by analyzing the buildings subject to these systems and problems in terms of contents. Above all, in the aspect of law and standard improvement, first, with regard to dual parts of two statutes though significant portion of them has the same contents in performance-based design (PBD) evaluation and disaster impact assessment (DIA), it is necessary to operate the systems after making them conform with each other and consolidating or abolishing them. Second, if it is impossible to consolidate or abolish performance-based design (PBD) evaluation and disaster impact assessment (DIA), the areas of contents of performance-based design (PBD) evaluation and disaster impact assessment (DIA) should be precisely classified and established. Next, engineering improvement measures against fire hazard in super high-rise building are as follows. First, it is necessary to revise the provisions of straight-run stairs in special escape stairs. And in case of installing a mechanical smoke exhaust system instead of smoke vent, sandwich pressurization used in the United Stated should be permitted. Second, with regard to smoke control system for special escape stairs, it was shown that there was necessity for revising the standards in order to enable air to be supplied according to section in case of fire, carrying out performance-based design, and the like from the early design stages to the completion stages. In the future, it is expected that an epoch-making contribution will be made to a decrease in casualties and property damage due to fire in case of super high-rise building where the results can be reflected after carrying out a study on maintenance and carrying out an additional study on other considerations of super high-rise building together with reflecting the improvement measures provided in the above-mentioned study.