• Title/Summary/Keyword: 스월 분사기

Search Result 46, Processing Time 0.026 seconds

Dynamic Characteristics of Coaxial Swirl-jet Injector with Acoustic Excitation (동축형 스월-제트 분사기의 음향가진에 따른 동특성)

  • Bae, Jinhyun;Kim, Taesung;Jeong, Seokgyu;Jeong, Chanyeong;Choi, Jeong Yeol;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.99-107
    • /
    • 2018
  • In this study, the injector transfer function (ITF) of a gas-gas coaxial jet-swirl injector is measured by perturbing jet or swirl flow using a speaker as jet flow increases. As a result of measuring the ITF varying feed system length, a peak occurs at a resonance frequency of space where the perturbed flow passes. With jet excitation, the ITF magnitude decreases, but increases thereafter as increasing the jet flow. Therefore the larger the velocity difference between jet and swirl flow, the larger the ITF. With swirl excitation, ITF decreases as increasing the jet flow because of the energy decrease with respect to the constant downstream flow.

A Numerical Study on Mixing Characteristics for Recess Length of Swirl Coaxial Injector (스월 동축형 분사기의 리세스 길이에 따른 혼합특성에 관한 수치적 연구)

  • Kim, Young-Jun;Hong, Moon-Geun;Lee, Soo-Yong;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.74-77
    • /
    • 2011
  • A mixing characteristics on recess length change of Gas-centered swirl coaxial injector using high-performance staged combustion rocket engine carry out study through CFD(Computational fluid dynamics). propellant phase that combined gas-liquid simulate gas-gas. In order to measure spreading angle, velocity distribution to injector exit and spray structure of propellant analyzed. Axial velocity increase by increasing recess length, but tangential velocity decrease. The result confirmed qualitative characteristics that the spreading angle decreases.

  • PDF

Spray characteristics of liquid-swirl/gas-jet coaxial injectors (액체스월-기체제트 동축 분사기의 분무특성)

  • Jeon, Jae-Hyoung;Hong, Moon-Guen;Kim, Jong-Gyou;Han, Yeoung-Min;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.82-85
    • /
    • 2009
  • In the development of Liquid Rocket Engine(LRE) systems, it is essential to understand the spray characteristics which influence mainly the performance and the stability of combustion. The injectors for this study have a recessed Liquid-swirl/Gas-centered jet coaxial type. For the similarity with actual conditions, the experimental conditions are calculated by using the momentum ratio as a matching parameter, and the stimulants of fuel and oxidizer are gaseous nitrogen and water respectively. The spray fields were measured by means of a photographic technique. Moreover, an effect of the momentum ratio has been investigated.

  • PDF

Experimental Study on the Merged Angle of Mixed-Interaction Regions of Sprays from Two Pressure-Swirl Injectors (스월 분사기 분무 혼합충돌지역에서의 중첩각도에 관한 실험적 연구)

  • Yi, Young-Sun;Hong, Moon-Geun;Lee, Soo-Yong
    • Journal of ILASS-Korea
    • /
    • v.16 no.4
    • /
    • pp.195-200
    • /
    • 2011
  • The pressure-swirl atomizer is widely used for the injectors in liquid rocket engines thanks to its high performance atomization and broad stability margin range. Spray mixed-interaction is an important area of study especially in cases where the propellant is mixed by spray interaction after an oxidant and a fuel are discharged separately. This interaction of sprays results in a significant modification of the spray characteristics such as the spatial evolution of the sprays. Experiments are conducted by a photographic technique to quantify the merged angle of the interaction regions of sprays from two pressure-swirl injectors. The experimental results show that the merged angle is mainly determined by the momentum flux ratios between two swirled sprays.

Spray Characteristics of Gas-Centered Swirl Coaxial Injectors according to Injection Conditions (분무 조건에 따른 기체 중심 스월 동축형 분사기의 분무 특성)

  • Park, Gujeong;Lee, Jungho;Lee, Ingyu;Yoon, Youngbin
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.167-173
    • /
    • 2014
  • The spray characteristics of Gas-Centered Swirl Coaxial Injector was investigated that there were different characteristics with or without gas flow. As gas flow was accelerated, the momentum of gas was transferred to the momentum of liquid in the low liquid Reynolds number. Therefore, the axial velocity of liquid was increased and the measured value was smaller than without gas flow. However, in the high momentum flux ratio, the momentum transfer hardly occurred and the results had constant values. As the recess length was increased, the mixing area of gas and liquid also was increased, the results were decreased.

Investigation for Spray Characteristics of Dual Swirl Injector (이중 스월 인젝터의 분무특성에 관한 연구)

  • Park Hee Ho;Jeong Chung Yon;Kim Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.17-26
    • /
    • 2005
  • Both numerical analysis and cold tests for the swirl coaxial type injector were performed to obtain the influence of spray angle, velocity ratio and liquid film thickness for pressure drop and recess. The basic experimental and numerical data obtained in this study can be applicable to the performance design of swirl coaxial type injector. Spray angle was not affected by the applied test pressure drop, but spray angle was affected by tangential velocity ratio and shape factors. Feasibility of numerical analysis for the liquid film thickness and spray angle was confirmed, and the change of liquid film thickness by tangential velocity ratio affected more seriously than pressure drop, and liquid film thickness was decreased with increasing tangential velocity ratio.

Study on Compressible Swirl Flow within an Injector (분사기 내 압축성 스월 유동에 대한 연구)

  • Suh Y. K.;Kang S. M.;Heo H. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.207-212
    • /
    • 2005
  • In this paper, we present the theoretical and numerical results of flow characteristics of a gas in a swirl injector. Proposed in this study are one-dimensional (theoretical) model and 2D/3D CFD models for use in the design of the injector. It was found that contrary to the classical theory about the compressible flow, the swirl gives a significant effect on the mass flow rate and the choking conditions. The one-dimensional model was found to Provide reasonably accurate results compared with the 2D/3D numerical results, so that it can be employed in th initial stage of the swirl-injector design process.

  • PDF

Experimental Investigation for Multi-Element Dual Swirl Coaxial Injector (다중요소 Dual Swirl 인젝터에 관한 실험적 연구)

  • Shin, Hun-Cheol;Lee, Seock-Chin;Park, Hee-Ho;Kim, Sun-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.137-144
    • /
    • 2006
  • The basic data obtained in this research for single element performance were directly applied to the design of injector head(7 elements). Designed performance of the 7-element Swirl Coaxial injector was $245kg_f$ sea level thrust with 20bar combustion chamber pressure. Numerical analysis were performed to obtain the change of spray pattern for the design of injector head, and we confirmed the feasibility and application of those results. Hot tests were performed for the multi-element injector to compare with the performance of the single element injector and those can be applied to the design of scaled liquid rocket engine. The basic data obtained in this research can be directly applied to the real liquid rocket injector design.

An Experimental Assesment of Combustion Stability of Coaxial Swirl Injector and Impinging Injector through Simulating Combustion Test (상압기상연소시험을 통한 동축형 스월 분사기와 충돌형 분사기의 연소안정성 평가)

  • Park, Junhyeong;Kim, Hongjip
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.153-156
    • /
    • 2014
  • This study was aimed to assess combustion stability for coaxial swirl injector and FOOF impinging injector which would be candidates in liquid rocket engine combustors. Simulating combustion tests under atmospheric condition have been conducted by gaseous oxygen and the mixture of methane and propane, using two actual injectors. By analyzing the measured dynamic pressure signals, we have evaluated the combustion stability margin of both injectors by drawing a stability map.

  • PDF

Turbulent Combustion Characteristics of a Swirl Injector in a Gas Turbine Annular Combustor Using LES and Level-set Flamelet (LES와 Level-set Flamelet 기법을 이용한 가스터빈 환형 연소기용 스월 분사기의 난류 연소 특성)

  • Kim, Lina;Hong, Ji-Seok;Jeong, Won Cheol;Yoo, Kwang-Hee;Kim, Jong-Chan;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2014
  • To investigate the flame dynamics in an annular combustor with single swirl injector, a 3D large-eddy simulation (LES) and a level-set flamelet turbulent combustion model have been implemented. The LM6000 developed by GEAE has been used as the combustor of concern and boundary conditions are based on experimental data. The strong central toroidal recirculation zone induced by the volume expansion of the combustion gas and the vortex breakdown continuously occurred through the procession of the vortex with decreasing strength, are observed.