• Title/Summary/Keyword: 스마트 IoT

Search Result 1,190, Processing Time 0.035 seconds

Systematic Development of Mobile IoT Device Power Management: Feature-based Variability Modeling and Asset Development (모바일 IoT 디바이스 파워 관리의 체계적인 개발 방법: 휘처 기반 가변성 모델링 및 자산 개발)

  • Lee, Hyesun;Lee, Kang Bok;Bang, Hyo-Chan
    • Journal of KIISE
    • /
    • v.43 no.4
    • /
    • pp.460-469
    • /
    • 2016
  • Internet of Things (IoT) is an environment where various devices are connected to each other via a wired/wireless network and where the devices gather, process, exchange, and share information. Some of the most important types of IoT devices are mobile IoT devices such as smartphones. These devices provide various high-performance services to users but cannot be supplied with power all the time; therefore, power management appropriate to a given IoT environment is necessary. Power management of mobile IoT devices involves complex relationships between various entities such as application processors (APs), HW modules inside/outside AP, Operating System (OS), platforms, and applications; a method is therefore needed to systematically analyze and manage these relationships. In addition, variabilities related to power management such as various policies, operational environments, and algorithms need to be analyzed and applied to power management development. In this paper, engineering principles and a method based on them are presented in order to address these challenges and support systematic development of IoT device power management. Power management of connected helmet systems was used to validate the feasibility of the proposed method.

A Study on improving manufacturing environment using IoT technology in small business environment (중소기업 환경에서 IoT 기술을 이용한 제조 환경 개선에 관한 분석 연구)

  • Jeong, Yoon-Su
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.2
    • /
    • pp.83-90
    • /
    • 2017
  • To launch the product recently attached to IoT consumer electronics, smart phones and healthcare products around the large companies is a trend that is growing interest in the IoT. However, the country's small business environment is what the environmental improvement process that is easily accessible to the small business environment because the IoT technologies are difficult to apply the IoT technologies than any other country environment than desperate situation. In this paper, we propose a service operating model to improve production efficiency when the fusion manufacturing process is currently operating in the country SMEs and IoT technology. Proposed model using the manufacturing product information and sensor / dabayiseu information in the entire manufacturing process has as its object to utilize the IoT technology. Performance evaluation, the proposed model is more efficient than the previous model and 23.1% of the manufacturing process. In addition, it is increasing the manufacturing process was reduced by 17.3%, the average processing time as compared to the previous model. Finally, the personnel cost to be used in the manufacturing process was found to be an average decrease of 19.8% than previous model.

The research of Automatic Classification of Products Using Smart Plug by Artificial Intelligence Technique (인공지능 기법으로 스마트 플러그를 이용한 제품 자동분류에 관한 연구)

  • Son, Chang-Woo;Lee, Sang-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.6
    • /
    • pp.842-848
    • /
    • 2018
  • The Smart plug is a device that connects between the outlet and the product at home, and it is an IoT type device that can drive energy saving and transmit information to the outside by power on / off control function and power measurement function. In this case, a smart plug that incorporates deep learning of intelligence technology that allows people to learn how to think about a computer, automatically classifies a product as it operates, and automatically tests the operating status of the washing machine by using input AC current pattern. Through this study, even if the product does not function as IoT, it can classify product type and operation state by smart plug connection alone, so we can draw a new paradigm of life pattern and energy saving in one family.

A Study on the Platform for Big Data Analysis of Manufacturing Process (제조 공정 빅데이터 분석을 위한 플랫폼 연구)

  • Ku, Jin-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.177-182
    • /
    • 2017
  • As major ICT technologies such as IoT, cloud computing, and Big Data are being applied to manufacturing, smart factories are beginning to be built. The key of smart factory implementation is the ability to acquire and analyze data of the factory. Therefore, the need for a big data analysis platform is increasing. The purpose of this study is to construct a platform for big data analysis of manufacturing process and propose integrated method for analysis. The proposed platform is a RHadoop-based structure that integrates analysis tool R and Hadoop to distribute a large amount of datasets. It can store and analyze big data collected in the unit process and factory in the automation system directly in HBase, and it has overcome the limitations of RDB - based analysis. Such a platform should be developed in consideration of the unit process suitability for smart factories, and it is expected to be a guide to building IoT platforms for SMEs that intend to introduce smart factories into the manufacturing process.

A Study on the Application Trends of Next-Generation Solar Cells and the Future Prospects of Smart Textile Hybrid Energy Harvesting Devices : Focusing on Convergence with Industrial Materials (차세대 태양전지의 활용 동향 및 스마트 텍스타일 하이브리드 에너지 하베스팅 소자의 미래전망에 관한 연구 : 산업 소재와의 융합 중심)

  • Park, Boong-Ik
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.151-158
    • /
    • 2021
  • In this paper, we analyzed the latest research trends, challenges, and potential applications of next-generation solar cell materials in various industrial fields. In addition, future prospects and possibilities of Smart Textile Hybrid Energy Harvesting Devices that will supply electricity by combining with wearable IoT devices are presented. The hybrid textile energy harvesting device fused next-generation solar cells with tribo-piezoelectric devices will develop into new 'Convergence Integrated Smart Wear' by combining the material itself with wearable IoT devices in the era of the 4th industrial revolution. The next-generation nanotechnology and devices proposed in this paper will be applied to the field of smart textile with an energy harvesting function. And we hope it will be a paradigm shift that evolves into creative products which provide AI services such as medical & healthcare by convergence with the future smart wear industry.

Study of Implementation as Digital Twin Framework for Vertical Smart Farm (식물공장 적용 디지털 트윈 프레임워크 설계 연구)

  • Ko, Tae Hwan;Noe, Seok Bong;Noh, Dong Hee;Choi, Ju Hwan;Lim, Tae Beom
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.377-389
    • /
    • 2021
  • This paper presents a framework design of a digital twin system for a vertical smart farm. In this paper, a framework of digital twin systems establishes three factors: 1) Client 2) IoT gateway, and 3) Server. Especially, IoT gateway was developed using the Eclipse Ditto, which has been commonly used as the standard open hardware platform for digital twin. In particular, each factor is communicating with the client, IoT gateway, and server by defining the message sequence such as initialization and data transmission. In this paper, we describe the digital twin technology trend and major platform. The proposed design has been tested in a testbed of the lab-scale vertical smart-farm. The sensor data is received from 1 Jan to 31 Dec 2020. In this paper, a prototype digital twin system that collects environment and control data through a raspberry pi in a plant factory and visualizes it in a virtual environment was developed.

Role Based Smart Health Service Access Control in F2C environment (F2C 환경에서 역할 기반 스마트 헬스 서비스 접근 제어)

  • Mi Sun Kim;Kyung Woo Park;Jae Hyun Seo
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.27-42
    • /
    • 2023
  • The development of cloud services and IoT technology has radically changed the cloud environment, and has evolved into a new concept called fog computing and F2C (fog-to-cloud). However, as heterogeneous cloud/fog layers are integrated, problems of access control and security management for end users and edge devices may occur. In this paper, an F2C-based IoT smart health monitoring system architecture was designed to operate a medical information service that can quickly respond to medical emergencies. In addition, a role-based service access control technology was proposed to enhance the security of user's personal health information and sensor information during service interoperability. Through simulation, it was shown that role-based access control is achieved by sharing role registration and user role token issuance information through blockchain. End users can receive services from the device with the fastest response time, and by performing service access control according to roles, direct access to data can be minimized and security for personal information can be enhanced.

Development of Smart Trash Box for Automatic Classification of Recyclables based on IoT (IoT 기반 재활용품 자동 분류 스마트 쓰레기통 개발)

  • Ji-Hoon Kim;Su-Bin Lee;Soo-Min Park;Ga-In Seo;Jaisoon Baek;Sung Jin Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.145-146
    • /
    • 2024
  • 본 논문에서는 최근 몇 년 동안 스마트시티 인프라 투자가 크게 성장하였으며 글로벌 스마트 쓰레기통 시장은 성장 가능성이 높을 것으로 예상된다. 본 논문에서는 이에 발맞추어 CNN과 MQTT를 활용한 스마트 쓰레기통을 제작하였다. 쓰레기의 종류를 구별하고 해당되는 쓰레기통의 뚜껑을 골라 여는 것은 현대인의 생활에서 비효율을 야기한다. 이러한 문제를 해결하고자 CNN을 통한 효율적인 분류와 MQTT를 통한 통신, 센서들을 활용한 더 나은 쓰레기 수거 방식을 제공한다. 스마트 쓰레기통으로 일상을 더욱 편하고 효율적이게 만드는 데 기여하고자 한다.

  • PDF

Feasibility Test with IoT-based DCPT system for Digital Compaction Information of Smart Construction (스마트건설 디지털 다짐정보 구축을 위한 IoT 기반 DCPT 시스템 현장실증)

  • Kim, Donghan;Bae, Kyoung Ho;Cho, Jinwoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.421-428
    • /
    • 2022
  • The earthwork is a core process of all constructions, and compaction measurement of earthwork play an important role in improving productivity. The analog tests such as Plate Bearing Test and Sand-cone occupy current compaction measurement techniques. Due to advanced 4th Industrial Revolution, research on analog tests combined smart construction technology are actively conducted. DCPT (Dynamic Cone penetration Test), simpler and faster than conventional tests, has recently on rise. However, it is also an analog that measures data manually and has several disadvantages such as history management and data verification. The IoT-based DCPT system developed in this study combines digital wire sensors, mobile phones, and Bluetooth with conventional DCPT. Compare to conventional test methods, IoT-based DCPT has advantages such as performance time, single-person measurement, low cost, mobile-based management, and real-time data verification. In addition, a test bed was built to verify IoT-based DCPT. The test bed was built under similar conditions to the actual earthworks site through roller equipment. DCPT data obtained from 322 stations. As a result, IoT-based DCPT showed good performance, and the test bed was also showed stable results as the compaction was carried out.

Evaluation of Compaction Quality Control applied the Dynamic Cone Penetrometer Test based on IoT (다짐품질관리를 위한 IoT 기반 DCPT 적용 평가)

  • Jisun, Kim;Jinyoung, Kim;Namgyu, Kim;Sungha, Baek;Jinwoo, Cho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.1-12
    • /
    • 2022
  • Generally, the plate load test and the field density test are conducted for compaction quality control in earthwork, and then additional analysis. Recently developed that the DCPT (Dynamic Cone Penetration Test) equipment for smart compaction quality control its the system are able to get location and real-time information about worker history management. The IoT-based the DCPT system improved the time-cost in the field compared traditional test, and the functions recording and storage of the DPI (Dynamic Cone Penetration Index) were automated. This paper describes using these DCPT equipment on in-situ and compared to the standards of the DCPT, and the compaction trend had be confirmed with DPI as the field test data. As a result, the DPI of the final compaction decreased by 1.4 times compared to the initial compaction, confirming the increase in the compaction strength of the subgrade compaction layer 10 to 14 cm deep from the surface. A trend of increasing compaction strength was observed. This showed a tendency to increase the compaction strength of the target DPI proposed by MnDOT and the results of the existing plate load test, but there was a difference in the increase rate. Therefore, additional studies are needed on domestic compaction materials and laboratory conditions for target DPI and correlation studies with the plate load tests. If this is reflected, it is suggested that DCPT will be widely used as smart construction equipment in earthworks.